求函數(shù)f(x)=cos
2
3
x
+sin
2
3
x
的圖象的相鄰兩條對稱軸之間的距離、最大值及單調(diào)減區(qū)間.
分析:f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式求出f(x)的最小正周期,即可確定出相鄰兩條對稱軸之間的距離,利用正弦函數(shù)的值域確定出f(x)的最大值,根據(jù)正弦函數(shù)的單調(diào)性即可確定出f(x)的單調(diào)減區(qū)間.
解答:解:f(x)=
2
×(
2
2
cos
2
3
x+
2
2
sin
2
3
x)=
2
sin(
2
3
x+
π
4
),
∵ω=
2
3
,∴T=
|ω|
=3π,
令2kπ+
π
2
2
3
x+
π
4
≤2kπ+
2
,k∈Z,解得:3kπ+
8
≤x≤3kπ+
15π
8
,k∈Z,
∴f(x)圖象的相鄰兩條對稱軸之間的距離為
T
2
=
2
,最大值為
2
,單調(diào)遞減區(qū)間為[3kπ+
8
,3kπ+
15π
8
],k∈Z.
點(diǎn)評:此題考查了兩角和與差的正弦函數(shù),正弦函數(shù)的定義域與值域,正弦函數(shù)的單調(diào)性,以及正弦函數(shù)的對稱性,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點(diǎn)P是曲線C上的一個動點(diǎn),求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

www.ks5u.co

已知函數(shù)

   (I)當(dāng)a<0時,求函數(shù)的單調(diào)區(qū)間;

   (II)若函數(shù)f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

同步練習(xí)冊答案