【題目】如圖,設a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐標系中的圖象如圖,則a,b,c,d的大小順序( )
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
【答案】C
【解析】解:作輔助直線x=1,當x=1時,
y=ax , y=bx , y=cx , y=dx的函數(shù)值正好是底數(shù)a、b、c、d
直線x=1與y=ax , y=bx , y=cx , y=dx交點的縱坐標就是a、b、c、d
觀察圖形即可判定大小:b<a<d<c
故選:C.
【考點精析】認真審題,首先需要了解指數(shù)函數(shù)的圖像與性質(zhì)(a0=1, 即x=0時,y=1,圖象都經(jīng)過(0,1)點;ax=a,即x=1時,y等于底數(shù)a;在0<a<1時:x<0時,ax>1,x>0時,0<ax<1;在a>1時:x<0時,0<ax<1,x>0時,ax>1).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面給出了一個問題的算法:
第一步,輸入x.
第二步,若x≥4,則執(zhí)行第三步,否則執(zhí)行第四步.
第三步,y=2x-1,輸出y.
第四步,y=x2-2x+3,輸出y.
問題:(1)這個算法解決的問題是什么?
(2)當輸入的x值為多大時,輸出的數(shù)值最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補全函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)(x∈R)的遞增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的值域;
(3)寫出函數(shù)f(x)(x∈R)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】調(diào)查在3級風的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船
(1)作出性別與暈船關系的列聯(lián)表;
(2)根據(jù)此資料,能否在犯錯誤的概率不超過0.1的前提下認為3級風的海上航行中暈船與性別有關?
暈船 | 不暈船 | 總計 | |
男人 | |||
女人 | |||
總計 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,…,).
(1)求成績在的頻率,并補全此頻率分布直方圖;
(2)求這次考試平均分的估計值;
(3)若從成績在和的學生中任選兩人,求他們的成績在同一分組區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以BD的中點O為球心,BD為直徑的球面交PD于點M.
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com