【題目】某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、),根據(jù)該圖,以下結論一定正確的是( )

A.年該工廠的棉簽產(chǎn)量最少

B.這三年中每年抽紙的產(chǎn)量相差不明顯

C.三年累計下來產(chǎn)量最多的是口罩

D.口罩的產(chǎn)量逐年增加

【答案】C

【解析】

根據(jù)該廠每年產(chǎn)量未知可判斷A、BD選項的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.

由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、BD選項錯誤;

由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計下來產(chǎn)量最多的是口罩,C選項正確.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】長春市統(tǒng)計局對某公司月收入在元內(nèi)的職工進行一次統(tǒng)計,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示職工月收入在區(qū)間內(nèi),單位:元).

(Ⅰ)請估計該公司的職工月收入在內(nèi)的概率;

(Ⅱ)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解手機品牌的選擇是否和年齡的大小有關,隨機抽取部分華為手機使用者和蘋果機使用者進行統(tǒng)計,統(tǒng)計結果如下表:

年齡 手機品牌

華為

蘋果

合計

30歲以上

40

20

60

30歲以下(含30歲)

15

25

40

合計

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根據(jù)表格計算得的觀測值,據(jù)此判斷下列結論正確的是(

A.沒有任何把握認為手機品牌的選擇與年齡大小有關

B.可以在犯錯誤的概率不超過0.001的前提下認為手機品牌的選擇與年齡大小有關

C.可以在犯錯誤的概率不超過0.01的前提下認為手機品牌的選擇與年齡大小有關

D.可以在犯錯誤的概率不超過0.01的前提下認為手機品牌的選擇與年齡大小無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】物業(yè)公司為了改善某小區(qū)空氣質(zhì)量和居住環(huán)境,計劃將小區(qū)內(nèi)部的空地種植綠植,平時許多用戶將私家車停在空地上,為了了解該小區(qū)居民對種植綠植的態(tài)度,在該小區(qū)中隨機抽查了100人進行了調(diào)查,調(diào)查情況如下表:

年齡段

頻數(shù)

5

15

20

20

10

贊成人數(shù)

3

12

17

18

16

2

1)求出表格中的值,并完成被調(diào)查人員年齡的頻率分布圖.

2)若從年齡在被調(diào)查者中按照是否贊成進行分層抽樣,從中抽取5人參與某項調(diào)查,然后再從這5人中隨機抽取2人參加座談會,求選出的2人中至少有1人贊成種植綠植的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程和曲線的直角坐標方程;

2)設點,直線與曲線的交點為、,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是無窮等比數(shù)列,若的每一項都等于它后面所有項的倍,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像相交于點兩點,若動點滿足,則點的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考取消文理科,實行模式,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人,并把調(diào)查結果制成下表:

年齡(歲)

頻數(shù)

5

15

10

10

5

5

了解

4

12

6

5

2

1

1)把年齡在稱為中青年,年齡在稱為中老年,請根據(jù)上表完成列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?

了解新高考

不了解新高考

總計

中青年

中老年

總計

附:.

0.050

0.010

0.001

3.841

6.635

10.828

2)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案