圓錐曲線
x2
4
+
y2
a
=1
的一條準線方程是x=8,則a的值為( 。
A、±
15
4
B、
7
4
C、
15
4
D、
7
2
分析:分別看a大于0和a小于0時,分別c和準線方程,進而根據(jù)準線方程是x=8建立等式求得a.
解答:解:當a>0時,c=
4-a
,準線方程為x=
4
4-a

4
4-a
=8,解得a=
15
4

當a<0時,c=
4+a
,準線方程為x=
4
4+a

∴=
4
4+a
=8,解得a=-
15
4

故選A
點評:本題主要考查了圓錐曲線的共同特特征問題.利用了雙曲線和橢圓的準線方程的表示方法相同.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以下五個關于圓錐曲線的命題中:
①平面內(nèi)到定點A(1,0)和定直線l:x=2的距離之比為
1
2
的點的軌跡方程是
x2
4
+
y2
3
=1
;
②點P是拋物線y2=2x上的動點,點P在y軸上的射影是M點A的坐標是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點距離之比等于常數(shù)λ(λ>0)的點的軌跡是圓;
④若動點M(x,y)滿足
(x-1)2+(y+2)2
=|2x-y-4|
,則動點M的軌跡是雙曲線;
⑤若過點C(1,1)的直線l交橢圓
x2
4
+
y2
3
=1
于不同的兩點A,B,且C是AB的中點,則直線l的方程是3x+4y-7=0.
其中真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點P是橢圓C上不與頂點重合的任意一點,MN是橢圓C的短軸,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結論,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列是有關直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下各個關于圓錐曲線的命題中
①設定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有3條;
③離心率為
1
2
,長軸長為8的橢圓標準方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標是(±1,0).
其中真命題的序號為
②④
②④
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若焦點在x軸的圓錐曲線
x2
4
+
y2
m
=1
的一條準線恰好為圓x2+y2+6x-7=0的一條切線,則m的值為
180
49
或-12
180
49
或-12

查看答案和解析>>

同步練習冊答案