函數(shù)y=f(x)的反函數(shù)為y=log2(x+1)+1(x>0),則f(x)=________.

2x-1-1(x>1)
分析:直接利用反函數(shù)的定義,求出原函數(shù)的反函數(shù)即可.
解答:因為函數(shù)為y=log2(x+1)+1(x>0),y>1,
所以log2(x+1)=y-1,
即x+1=2y-1,∴x=2y-1-1,
函數(shù)y=log2(x+1)+1(x>0)的反函數(shù)為y=2x-1-1,
所以f(x)=2x-1-1(x>1)
故答案為:2x-1-1(x>1).
點評:本題考查函數(shù)與反函數(shù)的關(guān)系,反函數(shù)的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項組成的數(shù)列為{tn}
(公共項tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項和S10
(3)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市高三上學期期中考試數(shù)學卷 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)已知正數(shù)數(shù)列{cn}的前n項之和Sn=(cn+).寫出Sn表達式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當n≥2時,設(shè)dn=,Dn是數(shù)列{dn}的前n項之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

 

查看答案和解析>>

同步練習冊答案