精英家教網 > 高中數學 > 題目詳情
如圖, 在空間四邊形SABC中, 平面ABC, , 于N, 于M.

求證:①AN^BC;  ②平面SAC^平面ANM
證明略     ②略
(1)證明即可.
(2)先證明得到,再證明即可
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分) 四棱錐的底面與四個側面的形狀和大小如圖所示。

(Ⅰ)寫出四棱錐中四對線面垂直關系(不要求證明)
(Ⅱ)在四棱錐中,若的中點,求證:平面
(Ⅲ)求四棱錐值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知正方體中,面中心為

(1)求證:;
(2)求異面直線所成角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四個結論中正確的是           
①AB∥CD ②AB⊥AD、踻AC|=|BD| ④AC⊥BD

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列說法中,正確的是
A.棱柱的側面可以是三角形
B.由六個大小一樣的正方形所組成的圖形是正方體的展開圖
C.正方體的各條棱都相等
D.棱柱的各條棱都相等

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

連結球面上兩點的線段稱為球的弦.半徑為4的球的兩條弦的長度分別等于分別為的中點,每條弦的兩端都在球面上運動,有下列四個結論:
①弦可能相交于點;②弦可能相交于點;
的最大值為5;    、的最小值為1.
其中正確結論的個數為(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

對于任意的直線與平面,在平面內必有直線,使(     )
A.平行B.相交C.垂直D.互為異面直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在三棱錐中,側棱兩兩垂直,
面積分別為、.則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

、已知一個球的表面積為,則這個球的體積為           。

查看答案和解析>>

同步練習冊答案