已知函數(shù)處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若,使成立,求實(shí)數(shù)的取值范圍
 , (2) (3)

試題分析:⑴先求再解方程 .(2)由構(gòu)造函數(shù)然后求 ,再解方程,確定的單調(diào)區(qū)間,然后確定 的取值范圍. (3)由,使成立 ,利用導(dǎo)數(shù)求 的最小值,利用二次函數(shù)求的最小值,解不等式求 的范圍.
試題解析: 由題意得           4分
(2)由⑴得

設(shè)當(dāng)
單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.
    7分
方程上恰有兩個(gè)不等的實(shí)數(shù)根,則,     9分
(3)依條件,時(shí)
時(shí)時(shí)
上為減函數(shù),在上為增函數(shù)
                                              12分
的最小值為    
  ∴的取值范圍為                     14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(m為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導(dǎo)數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點(diǎn)坐標(biāo)和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)若,求的單調(diào)區(qū)間,
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中
(1)若時(shí),記存在使
成立,求實(shí)數(shù)的取值范圍;
(2)若上存在最大值和最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)是否存在點(diǎn),使得函數(shù)的圖像上任意一點(diǎn)P關(guān)于點(diǎn)M對(duì)稱的點(diǎn)Q也在函數(shù)的圖像上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令,若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè), 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)及其導(dǎo)數(shù),若存在,使得=,則稱 的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的函數(shù)的個(gè)數(shù)是(  )
,②,③,④,⑤
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)有且僅有兩個(gè)不同的零點(diǎn),,則( 。
A.當(dāng)時(shí),,
B.當(dāng)時(shí),,
C.當(dāng)時(shí),,
D.當(dāng)時(shí),,

查看答案和解析>>

同步練習(xí)冊(cè)答案