17.任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個數(shù)列發(fā)生器,記由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.若定義函數(shù)f(x)=$\frac{4x-2}{x+1}$,且輸入x0=$\frac{49}{65}$,則數(shù)列{xn}的項構(gòu)成的集合為( 。
A.{$\frac{11}{19}$,$\frac{1}{5}$}B.{$\frac{11}{19}$,$\frac{1}{5}$,-$\frac{1}{2}$}C.{$\frac{11}{19}$,$\frac{1}{5}$,-1}D.{$\frac{11}{19}$,$\frac{1}{5}$,-$\frac{3}{4}$}

分析 根據(jù)函數(shù)的定義域D,代入x0=$\frac{49}{65}$,計算x1,x2…直到xn=-1,終止程序運行.

解答 解:由程序框圖知:當輸入x0=$\frac{49}{65}$時,
x1=$\frac{11}{19}$;x2=$\frac{4×\frac{11}{19}-2}{\frac{11}{19}+1}$=$\frac{1}{5}$x3=-1.
∵-1∉D,
∴數(shù)列只有三項,
故選C.

點評 本題考查了直到型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次運行程序是解答此類問題的常用方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若動點P的軌跡為曲線C,求此曲線C的方程;
(2)若曲線C的切線在兩坐標軸上有相等的截距,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,在空間四邊形ABCD中,點E,H分別是邊AB,AD的中點,F(xiàn),G分別是邊BC,CD上的點,且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{2}{3}$,則( 。
A.EF與GH互相平行B.EF與GH異面C.EF與GH相交D.EH與FG相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知A(3,5),O為坐標原點,則與OA垂直的直線斜率為-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知p:函數(shù)f(x)=lg(ax2-x+$\frac{1}{16}$a)的定義域為R;   q:函數(shù)y=x2-2ax+1在(0,+∞)上有零點.
如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列各選項中可以組成集合的是(  )
A.與2非常接近的全體實數(shù)
B.黃驊中學高一年級學習成績好的所有學生
C.2016里約奧運會得金牌的所有中國運動員
D.與無理數(shù)π相差很小的數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.關(guān)于x的一元二次不等式ax2+x-ax-1<0(a>0)的解集是( 。
A.B.{x|x<1}C.$\{x|x>-\frac{1}{a}或x<1\}$D.$\{x|-\frac{1}{a}<x<1\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.l1:x+(1+m)y+m-2=0;l2:mx+2y+8=0.當m為何值時,l1與l2
(1)垂直         
(2)平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.滿足{1,2,3}⊆A⊆{1,2,3,4,5}的集合A的個數(shù)為4.

查看答案和解析>>

同步練習冊答案