8.已知0為坐標(biāo)原點(diǎn),拋物線y2=8x,直線l經(jīng)過拋物線的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn)(點(diǎn)A在第一象限),滿足$\overrightarrow{BA}=4\overrightarrow{BF}$,則△A0B的面積為( 。
A.$\frac{{4\sqrt{6}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{{16\sqrt{6}}}{3}$

分析 求出拋物線的焦點(diǎn),設(shè)直線l為x=my+2,代入拋物線方程,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,解得m,再由三角形的面積公式,計(jì)算即可得到.

解答 解:拋物線y2=8x的焦點(diǎn)為(2,0),
設(shè)直線l為x=my+2,代入拋物線方程可得y2-8my-16=0,
設(shè)A(x1,y1),B(x2,y2),
則y1+y2=8m,y1y2=-16,
由$\overrightarrow{BA}=4\overrightarrow{BF}$,可得y1=-3y2,
由代入法,可得m2=$\frac{1}{3}$,
又△AOB的面積為S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}×$2×$\sqrt{64{m}^{2}+64}$=$\frac{16\sqrt{3}}{3}$.
故選C

點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量的共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)m∈R,命題“若m≤0,則方程x2+x-m=0有實(shí)根”的逆否命題是( 。
A.若方程x2+x-m=0有實(shí)根,則m>0B.若方程x2+x-m=0沒有實(shí)根,則m>0
C.若方程x2+x-m=0有實(shí)根,則m≤0D.若方程x2+x-m=0沒有實(shí)根,則m≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{2}$=1的長(zhǎng)軸長(zhǎng)為6,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{7}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{34}}}{6}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-({a-1}){x^2}+{b^2}x$,其中a,b為實(shí)數(shù)
 (1)求f(x)為奇函數(shù)的充要條件;
 (2)若令b=1,任取a∈[0,4],求f(x)在R上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{x}{2}$+sinx的所有正的極小值點(diǎn)從小到大排成的數(shù)列{xn}.
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)令bn=$\frac{x_n}{2π}$,設(shè)數(shù)列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n項(xiàng)和為sn,求證Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)直線l的方程為(a-1)x+3y+3-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線2x+y-7=0與直線x+2y-5=0的交點(diǎn)是( 。
A.(3,-1)B.(-3,1)C.(-3,-1)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某工廠制作如圖所示的一種標(biāo)識(shí),在半徑為R的圓內(nèi)做一個(gè)關(guān)于圓心對(duì)稱的“工”字圖形,“工”字圖形由橫、豎、橫三個(gè)等寬的矩形組成,兩個(gè)橫距形全等且成是豎矩形長(zhǎng)的$\sqrt{3}$倍,設(shè)O為圓心,∠AOB=2α,“工”字圖形的面積記為S.
(1)將S表示為α的函數(shù);
(2)為了突出“工”字圖形,設(shè)計(jì)時(shí)應(yīng)使S盡可能大,則當(dāng)α為何值時(shí),S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xetx-ex+1,其中t∈R.
(1)若方程f(x)=1有兩個(gè)實(shí)數(shù)根,求t的取值范圍;
(2)若f(x)在(0,+∞)上無極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案