在直三棱柱中,, 的中點,上一點,且
(1)求證: 平面;
(2)求三棱錐的體積;
(3)試在上找一點,使得平面
(1同解析; (2)三棱錐的體積=;(3)當時,平面. 
(1)證明:中點  ,又直三棱柱中:底面
底面,平面,平面
.在矩形中:,
  , ,即
,        平面;        
(2)解:平面 
=;    
(3)當時,平面
證明:連,設,連,
 為矩形,中點,
中點,
平面,平面  平面.         
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,在梯形中,的中點,將沿折起,使點到點的位置,使二面角的大小為
(1)求證:;
(2)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:四棱錐P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 點F為線段PC的中點,
(1)求證: BF∥平面PAD;
(2) 求證:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD—中,AB=2,,E為的中點,連結ED,EC,EB和DB,
(1)求證:平面EDB⊥平面EBC;
(2)求二面角E-DB-C的正切值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD—A1B1C1D1中,點E是棱BC的中點,點F是棱
CD上的動點.
(I)試確定點F的位置,使得D1E⊥平面AB1F;
(II)當⊥平面AB1F時,求二面角C1—EF—A的大。ńY果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖四棱錐中,底面,正方形的邊長為2
(1)求點到平面的距離;
(2)求直線與平面所成角的大;
(3)求以為半平面的二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面是正方形的四棱錐,平面⊥平面,===2.
(I)求證:;
(II)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

水平桌面兒上放置著一個容積為V的密閉長方體玻璃容器ABCD—A1B1C1D1,其中裝有V的水。
(1)把容器一端慢慢提起,使容器的一條棱AD保持在桌面上,這個過程中水的形狀始終是柱體;(2)在(1)中的運動過程中,水面始終是矩形;(3)把容器提離桌面,隨意轉動,水面始終過長方體內的一個定點;(4)在(3)中水與容器的接觸面積始終不變。
以上說法正確的是_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖中不可能圍成正方體的是(   )

查看答案和解析>>

同步練習冊答案