分析 找出圓心坐標(biāo)和半徑r,利用點(diǎn)到直線的距離公式求出圓心到直線l的距離d,根據(jù)垂徑定理由垂直得中點(diǎn),再利用勾股定理即可求出弦長(zhǎng).
解答 解:x2+(y-1)2=5的圓心坐標(biāo)為(0,1),半徑r=$\sqrt{5}$,
∴圓心到直線3x+y-6=0的距離d=$\frac{5}{\sqrt{10}}$=$\frac{\sqrt{10}}{2}$,
則直線l被圓截得的弦長(zhǎng)=2$\sqrt{5-\frac{5}{2}}$=$\sqrt{10}$,
故答案為:$\sqrt{10}$.
點(diǎn)評(píng) 當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),然后由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{1}{e}$,+∞) | B. | $[-\frac{1}{e}$,+∞) | C. | (0,e) | D. | $[-\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>0,則2a>1 | B. | 若x2+y2=0,則x=y=0 | ||
C. | 若b2=ac,則a,b,c成等比數(shù)列 | D. | 若sinα=sinβ,則不一定有α=β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 138 | B. | 85 | C. | 23 | D. | 135 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
運(yùn)動(dòng)員 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 8.7 | 9.1 | 9.0 | 8.9 | 9.3 |
乙 | 8.9 | 9.0 | 9.1 | 8.8 | 9.2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com