如圖,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn)
(Ⅰ)求點(diǎn)C到平面A1ABB1的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-C1的平面角的余弦值.

【答案】分析:(I)由題意,由于可證得CD⊥平面A1ABB1.故點(diǎn)C到平面的距離即為CD的長度,易求;
(II)解法一:由題意結(jié)合圖象,可通過作輔助線先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;
解法二:根據(jù)幾何體的形狀,可過D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1兩兩垂直,則以D為原點(diǎn),射線DB,DC,DD1分別為X軸、Y軸、Z軸的正半軸建立空間直角坐標(biāo)系D-xyz.給出各點(diǎn)的坐標(biāo),分別求出兩平面的法向量,求出兩向量的夾角即為兩平面的夾角.
解答:解:(I)由AC=BC,D為AB的中點(diǎn),得CD⊥AB.又CD⊥AA1
故CD⊥平面A1ABB1
所以點(diǎn)C到平面A1ABB1的距離為CD==
(II)解法一:如圖1,取D1為A1B1的中點(diǎn),連接DD1,則DD1∥AA1∥CC1
又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1為所求的二面角A1-CD-C1的平面角.因A1D為A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂線定理的逆定理得AB1⊥A1D.從而∠A1AB1、∠A1DA都與∠B1AB互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,從而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===
解法二:如圖2,過D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1兩兩垂直,以D為原點(diǎn),射線DB,DC,DD1分別為X軸、Y軸、Z軸的正半軸建立空間直角坐標(biāo)系D-xyz.
設(shè)直三棱柱的高為h,則A(-2,0,0),A1(-2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),從而=(4,0,h),=(2,,-h)
由AB1⊥A1C,可得8-h2=0,h=2,故=(-2,0,2),=(0,0,2),=(0,,0)
設(shè)平面A1CD的法向量為=(x1,y1,z1),則有,
=0且=0,即,取z1=1,則=(,0,1)
設(shè)平面C1CD的法向量為=(x2,y2,z2),則,即=0,取x2=1,得=(1,0,0),
所以cos<,>===,所以二面角A1-CD-C1的平面角的余弦值
點(diǎn)評:本題考查二面角的求法及點(diǎn)到面距離的求法,點(diǎn)到面的求法一般是作垂線,垂線段的長度即所求,二面角的余弦值的求法有兩種,一種是幾何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二種方法是現(xiàn)在比較常用的方法向量法,其特征是思維量小,計(jì)算量大,作題時(shí)對這兩種方法要根據(jù)題設(shè)靈活選用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案