【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數(shù)學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
科目:高中數(shù)學 來源: 題型:
【題目】已知離心率為的橢圓,經(jīng)過拋物線的焦點,斜率為1的直線經(jīng)過且與橢圓交于兩點.
(1)求面積;
(2)動直線與橢圓有且僅有一個交點,且與直線,分別交于兩點,且為橢圓的右焦點,證明為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線L的參數(shù)方程為: ,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為 .
(Ⅰ)求曲線C的參數(shù)方程;
(Ⅱ)當 時,求直線l與曲線C交點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直四棱柱的棱長均相等,且BAD=60,M是側棱DD1的中點,N是棱C1D1上的點.
(1)求異面直線BD1和AM所成角的余弦值;
(2)若二面角的大小為,,試確定點N的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示校情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)天每天新增感染人數(shù)不超過人”,根據(jù)連續(xù)天的新增病例數(shù)計算,下列各項選項中,一定符合上述指標的是( )
①平均數(shù);
②標準差;
③平均數(shù);且標準差;
④平均數(shù);且極差小于或等于;
⑤眾數(shù)等于且極差小于或等于.
A.①②B.③④C.③④⑤D.④⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校需要從甲、乙兩名學生中選一人參加數(shù)學競賽,抽取了近期兩人次數(shù)學考試的成績,統(tǒng)計結果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(分) | |||||
乙的成績(分) |
(1)若從甲、乙兩人中選出一人參加數(shù)學競賽,你認為選誰合適?請說明理由.
(2)若數(shù)學競賽分初賽和復賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出道,若答對,則可參加復賽,否則被淘汰.
方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復賽,否則被潤汰.
已知學生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進人復賽的可能性更大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新冠肺炎疫情這只“黑天鵝”的出現(xiàn),給經(jīng)濟運行帶來明顯影響,住宿餐飲、文體娛樂、交通運輸、旅游等行業(yè)受疫情影響嚴重.隨著復工復產(chǎn)的有序推動,我市某西餐廳推出線上促銷活動:
A套餐(在下列食品中6選3)
西式面點:蔓越莓核桃包、南瓜芝土包、黑列巴、全麥吐司;
中式面點:豆包、桂花糕
B套餐:醬牛肉、老味燒雞熟食類組合.
復工復產(chǎn)后某一周兩種套餐的日銷售量(單位:份)如下:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
A套餐 | 11 | 12 | 14 | 18 | 22 | 19 | 23 |
B套餐 | 6 | 13 | 15 | 15 | 37 | 20 | 41 |
(1)根據(jù)該西餐廳上面一周A、B兩種套餐的銷售情況,結合兩種套餐的平均銷售量和方差,評價兩種套餐的銷售情況(不需要計算,只給出結論即可);
(2)如果該西餐廳每種套餐每日銷量少于20份表示業(yè)績“一般”,銷量大于等于20份表示業(yè)績“優(yōu)秀”,求該西餐廳在這一周內(nèi)B套餐連續(xù)兩天中至少有一天銷量業(yè)績?yōu)?/span>“優(yōu)秀”的概率;
(3)某顧客購買一份A套餐,求她所選的面點中所含中式面點個數(shù)X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)了一批零件,從中隨機抽取100個作為樣本,測出它們的長度(單位:厘米),按數(shù)據(jù)分成,,,,5組,得到如圖所示的頻率分布直方圖.以這100個零件的長度在各組的頻率代替整批零件長度在該組的概率.
(1)估計該工廠生產(chǎn)的這批零件長度的平均值(同一組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替);
(2)規(guī)定零件長度在區(qū)間內(nèi)的零件為優(yōu)等品,從這批零件中隨機抽取3個,記抽到優(yōu)等品的個數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com