對于函數(shù)f(x)(x∈D),若x∈D時,恒有>成立,則稱函數(shù)是D上的J函數(shù).
(Ⅰ)當(dāng)函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),
試比較g(a)與g(1)的大。
求證:對于任意大于1的實(shí)數(shù)x1,x2,x3, ,xn,均有g(shù)(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得證.
【解析】
試題分析:(Ⅰ)先求得,再由>得,解得;(Ⅱ)①構(gòu)造函數(shù),證明為上的增函數(shù),再討論就可得到,②先證得,
即得,
整理得,
同理可得類似的的等式,累加即可得證.
試題解析:(Ⅰ)由,可得,
因?yàn)楹瘮?shù)是函數(shù),所以,即,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092200414184147197/SYS201309220042428316669595_DA.files/image020.png">,所以,即的取值范圍為. (3分)
(Ⅱ)①構(gòu)造函數(shù),則,可得為上的增函數(shù),當(dāng)時,,即,得;
當(dāng)時,,即,得;
當(dāng)時,,即,得. (6分)
②因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092200414184147197/SYS201309220042428316669595_DA.files/image034.png">,所以,
由①可知,
所以,整理得,
同理可得, ,.
把上面個不等式同向累加可得[. (12分)
考點(diǎn):1.恒成立問題;2.導(dǎo)數(shù)在求函數(shù)單調(diào)性、最值的應(yīng)用;3.不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
下列說法正確的是
[ ]
A.對于函數(shù)f(x),如果存在一個常數(shù)T,使得定義域內(nèi)的每一個x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)
B.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在一個x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)
C.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在若干個x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
D.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域的每一個x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:013
下列說法正確的是
[ ]
A.對于函數(shù)f(x),如果存在一個常數(shù)T,使得定義域內(nèi)的每一個x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)
B.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在一個x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)
C.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在若干個x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
D.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域的每一個x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:海南省模擬題 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com