設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)圖象上的兩點,且,點P的橫坐標(biāo)為
(1)求證:P點的縱坐標(biāo)為定值,并求出這個定值;
(2)若,求Sn;
(3)記Tn為數(shù)列的前n項和,若對一切n∈N*都成立,試求a的取值范圍.


【答案】分析:(1)由得到P是P1P2的中點⇒x1+x2=1⇒y1+y2=1得到y(tǒng)p即可;
(2)由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,而能寫成,兩者相加可得Sn;
(3)先表示Tn的同項公式,求出之和,根據(jù)利用基本不等式求出a的取值范圍即可.
解答:解:(1)∵
∴P是P1P2的中點⇒x1+x2=1=
=1

(2)由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,,
相加得=2f(1)+1+1+…+1=n+3-2(n-1個1)

(3)


,當(dāng)且僅當(dāng)n=4時,取“=”
,因此,
點評:考查學(xué)生運用數(shù)列及數(shù)列求和的能力,理解掌握指數(shù)函數(shù)性質(zhì)的能力,以及會用基本不等式證明的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f是直角坐標(biāo)平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設(shè)P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當(dāng)P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點Q(-x+1,
12
y)

(Ⅰ)求映射f下不動點的坐標(biāo);
(Ⅱ)若P1的坐標(biāo)為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個公差為d(d≠0)的等差數(shù)列,其中O是坐標(biāo)原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
100
+
y2
25
=1,n=3.點P1(10,0)及S3=255,求點P3的坐標(biāo);(只需寫出一個)
(2)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當(dāng)公差d變化時,求Sn的最小值;
(3)請選定一條除橢圓外的二次曲線C及C上的一點P1,對于給定的自然數(shù)n,寫出符合條件的點P1,P2,…Pn存在的充要條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點,且
OP
=
1
2
(
OP1
+
OP2
)
,點P的橫坐標(biāo)為
1
2

(1)求證:P點的縱坐標(biāo)為定值,并求出這個定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項和,若Tn<a(Sn+1+
2
)
對一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n
;
(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個公差為d(d≠0) 的等差數(shù)列,其中O是坐標(biāo)原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點P1(3,0) 及S3=162,求點P3的坐標(biāo);(只需寫出一個)
(2)若C的方程為y2=2px(p≠0).點P1(0,0),對于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當(dāng)公差d變化時,求Sn的最小值.
符號意義 本試卷所用符號 等同于《實驗教材》符號
向量坐標(biāo)
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過點(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個不同點,又點P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點.試問:當(dāng)xP=
1
2
時,yP是否為定值?若是,求出yP的值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案