精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,頂點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在A(yíng)M上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
,
NP
AM
=0,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)過(guò)點(diǎn)A且傾斜角是45°的直線(xiàn)l交曲線(xiàn)E于兩點(diǎn)H、Q,求|HQ|.
分析:(1)利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)推出 NC+NM=r=2
2
>AC,再利用橢圓的定義知,點(diǎn)N的軌跡是以A、C 為焦點(diǎn)的橢圓,利用待定系數(shù)法求出橢圓的方程.
(2)點(diǎn)斜式寫(xiě)出直線(xiàn)l方程,代入曲線(xiàn)E的方程,轉(zhuǎn)化為一元二次方程,利用根與系數(shù)的關(guān)系和弦長(zhǎng)公式求出|HQ|.
解答:解:(1)設(shè)點(diǎn)N的坐標(biāo)為(x,y),∵
AM
=2
AP
,∴點(diǎn)P為AM的中點(diǎn),
NP
AM
=0,∴NP⊥AM,∴NP是線(xiàn)段AM的垂直平分線(xiàn),∴NM=NA,
又點(diǎn)N在CM上,設(shè)圓的半徑是 r,則 r=2
2
,
∴NC=r-NM,∴NC+NM=NC+NA=r=2
2
>AC,∴點(diǎn)N的軌跡是以A、C 為焦點(diǎn)的橢圓,
∵2a=2
2
,c=1,∴b=1,∴橢圓 
x2
2
+y2=1,即曲線(xiàn)E的方程:
x2
2
+y2=1.
(2)∵過(guò)點(diǎn)A且傾斜角是45°的直線(xiàn)l交曲線(xiàn)E于兩點(diǎn)H、Q,∴直線(xiàn)l方程為 y-0=x-1,
代入曲線(xiàn)E的方程得:3x2-4x=0,∴x1+x2=
2
3
,x1•x2=0,
由弦長(zhǎng)公式得:|HQ|=
1+1
(x1+x2)2-4x1x2
=
2
2
3
,
點(diǎn)評(píng):本題考查用定義法求軌跡方程,及直線(xiàn)與橢圓的位置關(guān)系,利用弦長(zhǎng)公式求出弦長(zhǎng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線(xiàn)段AM上,點(diǎn)N在線(xiàn)段CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0
,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在A(yíng)M上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)過(guò)點(diǎn)S(0,
1
3
)且斜率為k的動(dòng)直線(xiàn)l交曲線(xiàn)E于A(yíng)、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿(mǎn)足
GP
=
GA
+
GB
使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在A(yíng)M上,點(diǎn)N在CM上,且滿(mǎn)足AM=2AP,NP⊥AM,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)l交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足FG=
1
2
FH
,求直線(xiàn)l的方程;
(3)設(shè)曲線(xiàn)E的左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F1的直線(xiàn)交曲線(xiàn)于Q,S兩點(diǎn),過(guò)F2的直線(xiàn)交曲線(xiàn)于R,T兩點(diǎn),且QS⊥RT,垂足為W;
(ⅰ)設(shè)W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•石景山區(qū)一模)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在A(yíng)M上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0
,點(diǎn)N的軌跡為曲線(xiàn)E.
(Ⅰ) 求曲線(xiàn)E的方程;
(Ⅱ) 若點(diǎn)B1(x1,y1),B2(-1,y2),B3(x3,y3)在曲線(xiàn)E上,線(xiàn)段B1B3的垂直平分線(xiàn)為直線(xiàn)l,且|B1A|,|B2A|,|B3A|成等差數(shù)列,求x1+x3的值,并證明直線(xiàn)l過(guò)定點(diǎn);
(Ⅲ)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在A(yíng)M上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
,
NP
AM
=0,點(diǎn)N的軌跡方程是( 。
A、
x2
2
+y2=1
B、
x2
2
-y2=1
C、x2+
y2
2
=1
D、x2-
y2
2
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案