(任選一題)
①已知函數(shù)f(x)=x2-2,g(x)=xlnx,
(1)若對(duì)一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)試判斷方程ln(1+x2)-
12
f(x)-k=0
有幾個(gè)實(shí)根.
②已知f′(x)為f(x)的導(dǎo)函數(shù),且定義在R上,對(duì)任意的x都有2f(x)+xf′(x)>x2,試證明f(x)>0.
分析:①(1)若對(duì)一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,將g(x)代入化簡(jiǎn)得2xlnx+x2-ax+3≥0解出a要小于函數(shù)的最小值,利用導(dǎo)數(shù)討論函數(shù)的增減性得到函數(shù)的最小值即可;
(2)將f(x)代入到方程中化簡(jiǎn)得k等于一個(gè)函數(shù),求出函數(shù)的導(dǎo)函數(shù)=0時(shí)的x值,然后討論函數(shù)的增減性得到函數(shù)的最大值,然后討論k的范圍決定方程解的個(gè)數(shù);
②設(shè)g(x)=x2f(x),求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而可得g(x)≥0,進(jìn)而可得結(jié)論.
解答:解:①(1)若對(duì)一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,
即2xlnx+x2-ax+3≥0在x∈(0,+∞)恒成立,∴a≤2lnx+x+
3
x
在x∈(0,+∞)恒成立,
令F(x)=2lnx+x+
3
x
,則F′(x)=
(x+3)(x-1)
x2
,
令F′(x)=0,則x=1,∴F(x)在(0,1)遞減,在(1,+∞)遞增,
∴Fmin=F(1)=4,∴只需a≤4.
(2)將原方程化為ln(1+x2)-
1
2
x2+1=k,
令G(x)=ln(1+x2)-
1
2
x2+1,為偶函數(shù),且G(0)=1,x>0時(shí)G′(x)=
-x(x+1)(x-1)
x2+1

∴G(x)max=
1
2
+ln2且x→+∞,y→-∞,
∴k>
1
2
+ln2時(shí),無解;k=
1
2
+ln2或k=1時(shí),三解;1<k<
1
2
+ln2,四解;k<1時(shí),兩解.
②證明:設(shè)g(x)=x2f(x),則令g'(x)=x[2f(x)+xf'(x)]=0得x=0
當(dāng)x<0,g'(x)<0,∴函數(shù)g(x)單調(diào)遞減;當(dāng)x>0,g'(x)>0,函數(shù)g(x)單調(diào)遞增
∴g(x)min=g(0)=0
∴g(x)≥0
∵f′(x)為f(x)的導(dǎo)函數(shù),對(duì)任意的x都有2f(x)+xf′(x)>x2,∴f(x)=0不成立
∴f(x)>0.
點(diǎn)評(píng):本題考查學(xué)生利用導(dǎo)數(shù)求函數(shù)極值的能力,理解函數(shù)恒成立條件的能力,以及函數(shù)與方程的綜合運(yùn)用能力,考查不等式的證明,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:已知函數(shù)f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)-
1
2
,(其中ω>0)
,且函數(shù)y=f(x)的圖象相鄰兩條對(duì)稱軸之間的距離為
π
2

(Ⅰ)求f(
π
6
)
的值;
(Ⅱ)若函數(shù)f(kx+
π
12
)(k>0)
在區(qū)間[-
π
6
,
π
3
]
上單調(diào)遞增,求實(shí)數(shù)k的取值范圍;
(III)是否存在實(shí)數(shù)m使方程3f2(x)-f(x)+m=0在(
π
12
π
3
]
內(nèi)僅有一解,若存在,求出實(shí)數(shù)m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封一模)(選做題)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集為{x|x≤1或x≥5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+4)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案