已知雙曲線C的中點(diǎn)在原點(diǎn),雙曲線C的右焦點(diǎn)為F坐標(biāo)為(2,0),且雙曲線過點(diǎn)C(
2
,
3
).
(1)求雙曲線C的方程;
(2)設(shè)雙曲線C的左頂點(diǎn)為A,在第一象限內(nèi)任取雙曲線上一點(diǎn)P,試問是否存在常數(shù)λ(λ>0),使得∠PFA=λ∠PAF恒成立?并證明你的結(jié)論.
分析:(1)設(shè)出雙曲線方程,利用雙曲線C的右焦點(diǎn)為F坐標(biāo)為(2,0),且雙曲線過點(diǎn)C(
2
3
),建立方程組,求出幾何量,即可得出雙曲線的方程;
(2)先由PF⊥x軸時(shí),求出λ的值,再證明當(dāng)PF與x軸不垂直時(shí)∠PFA=2∠PAF成立.
解答:解:(1)設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)

∵雙曲線C的右焦點(diǎn)為F坐標(biāo)為(2,0),且雙曲線過點(diǎn)C(
2
,
3
),
a2+b2=4
2
a2
-
3
b2
=1
,∴a=1,b=
3

∴雙曲線C的方程為x2-
y2
3
=1
;
(2)當(dāng)PF⊥x軸時(shí),P(2,3),|AF|=1+2=3,∴∠PFA=90°,∠PAF=45°,此時(shí)λ=2.
以下證明當(dāng)PF與x軸不垂直時(shí)∠PFA=2∠PAF成立.
設(shè)P(x0,y0),則kPA=tan∠PAF=
y0
x0+1
,kPF=-tan∠PFA=
y0
x0-2

tan2∠PAF=
2•
y0
x0+1
1-(
y0
x0+1
)2
=
2(x0+1)y0
(x0+1)2-y02

x02-
y02
3
=1
得y02=3(x02-1)代入上式,得tan2∠PAF=tan∠PFA恒成立.
∵∠PFA∈(0,
π
2
)∪(
π
2
,
3
),∠PAF∈(0,
π
4
)∪(
π
4
,
π
3
),
∴∠PFA=2∠PAF恒成立.
綜上,常數(shù)λ為2.
點(diǎn)評(píng):本題考查雙曲線的方程與性質(zhì),考查存在性問題的探求,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過點(diǎn)P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過點(diǎn)P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2y2-10x+20=0相切.過點(diǎn)P(-4,0)作斜率為的直線l,使得lG交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.

 (1)求雙曲線G的漸近線的方程;

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案