函數(shù)y=
2-2sinx
cosx-4
的值域是( 。
分析:y=
2-2sinx
cosx-4
得ycosx-4y=2-2sinx,即2sinx+ycosx=2+4y,然后利用輔助角公式結(jié)合三角函數(shù)的有界性進(jìn)行求值域.
解答:解:由y=
2-2sinx
cosx-4
得ycosx-4y=2-2sinx,即2sinx+ycosx=2+4y,
4+y2
sin?(x+θ)=2+4y
,即sin?(x+θ)=
2+4y
4+y2
,θ為參數(shù).
因?yàn)?span id="eq8a8u0" class="MathJye">|sin?(x+θ)|=
|2+4y|
4+y2
≤1,所以平方得15y2+16y≤0,解得-
16
15
≤y≤0

即函數(shù)y=
2-2sinx
cosx-4
的值域是[-
16
15
,0
].
故選B.
點(diǎn)評(píng):本題主要考查三角函數(shù)的值域問題,利用三角函數(shù)的有界性是解決本題的關(guān)鍵,綜合性較強(qiáng),運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α
=
1
1
,屬于特征值1的一個(gè)特征向量為
β
=
&-2
;
(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=1-2sin(
π
4
-x)cos(
π
4
-x),x∈R,則該函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]本題包括A、B、C、D共4小題,請(qǐng)從這4小題中選做2小題,每小題10分,共20分.
A.如圖,AD是∠BAD的角平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E、F兩點(diǎn).求證:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直線l的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線C
x=1+2cosα
y=2+2sinα
(α為參數(shù))相較于A、B兩點(diǎn),求AB的長.
D.設(shè)函數(shù)f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)對(duì)任意a,b∈R,且a≠0恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)下面有四個(gè)命題:
①函數(shù)y=2|sin(2-2x)|的周期是π;
②函數(shù)y=2sin|2x-2|的圖象的對(duì)稱軸是直線x=1;
③函數(shù)y=2sin(2x-2)+1的圖象的一個(gè)對(duì)稱中心的坐標(biāo)是(1,1)
④函數(shù)y=2sin(2x-2)的圖象向右平移2個(gè)單位得到函數(shù)y=2sin(2x-4)的圖象.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案