已知以F1(-2,0),F2(2,0)為焦點(diǎn)的橢圓與直線x+y+4=0有且僅有一個(gè)交點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為(  )
A.3  B.2  C.2  D.4
C
設(shè)橢圓方程為+=1(a>b>0).

得(a2+3b2)y2+8b2y+16b2-a2b2=0,
可得a2=7,∴2a=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面內(nèi)與兩定點(diǎn))連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過(guò)點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項(xiàng)為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(t,0),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓+=1(a>b>0)的右頂點(diǎn)為A(1,0),過(guò)其焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1,則橢圓方程為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是(  )
A.圓B.橢圓
C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓C:=1,過(guò)點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A,B兩點(diǎn).在x軸上若存在定點(diǎn)P,使PM平分∠APB,則P的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上有一點(diǎn)P到左焦點(diǎn)的距離是4,則點(diǎn)p到右焦點(diǎn)的距離是(  ).
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案