若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)
分析:從兩個方面來說明這兩個條件可以互相推出,由數(shù)列{bn}是公差為m的等差數(shù)列及m=0得bn=b1,bn+12-bn2=0,數(shù)列{bn}是等方差數(shù)列;由數(shù)列{bn}是公差為m的等差數(shù)列及數(shù)列{bn}是等差數(shù)列,得m=0.
解答:解:由數(shù)列{bn}是公差為m的等差數(shù)列及m=0
得bn=b1,bn+12-bn2=0,數(shù)列{bn}是等方差數(shù)列;
由數(shù)列{bn}是公差為m的等差數(shù)列及數(shù)列{bn}是等差數(shù)列
得bn+12-bn2=(b1+nm)2-[b1+(n-1)m]2=2b1m+(2n-1)m2=d對任意的n∈N*都成立,
令n=1與n=2別得2b1m+m2=d,2b1m+3m2=d,
兩式相減得m=0.
綜上所述,m=0是數(shù)列{bn}是等方差數(shù)列的充分必要條件.
故答案為:充要條件
點評:本題考查條件問題,考查等差數(shù)列的性質(zhì)應用和新定義,本題解題的關(guān)鍵是理解新定義的等方差數(shù)列,本題是一個中檔題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•煙臺二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習冊答案