在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
(1)見解析(2)見解析
【解析】本題主要考查線面平行的判定定理和線面垂直的判定定理.考查對基礎(chǔ)知識的綜合應(yīng)用能力和基本定理的掌握能力。
(Ⅰ)欲證EF∥平面CB1D1,根據(jù)直線與平面平行的判定定理可知只需證EF與平面CB1D1內(nèi)一直線平行,連接BD,根據(jù)中位線可知EF∥BD,則EF∥B1D1,又B1D1⊂平面CB1D1,EF⊄平面CB1D1,滿足定理所需條件;
(Ⅱ)欲證平面CAA1C1⊥平面CB1D1,根據(jù)面面垂直的判定定理可知在平面CB1D1內(nèi)一直線與平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,則AA1⊥B1D1,A1C1⊥B1D1,滿足線面垂直的判定定理則B1D1⊥平面CAA1C1,而B1D1⊂平面CB1D1,滿足定理所需條件.
解:(1)證明:連結(jié)BD.
在長方體中,對角線.
又 E、F為棱AD、AB的中點,
.
.
又B1D1平面,平面,
EF∥平面CB1D1.
(2) 在長方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,
AA1⊥B1D1.
又在正方形A1B1C1D1中,A1C1⊥B1D1,
B1D1⊥平面CAA1C1.
又 B1D1平面CB1D1,
平面CAA1C1⊥平面CB1D1.
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
在正方體ABCD-A′B′C′D′中,點M是棱AA′的中點,點O是對角線BD′的中點.
(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;
(Ⅱ)求二面角M-BC′-B′的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
在正方體ABCD-A′B′C′D′中,點M是棱AA′的中點,點O是對角線BD′的中點.
(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;
(Ⅱ)求二面角M-BC′-B′的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題(四川卷)解析版(文) 題型:解答題
在正方體ABCD-A′B′C′D′中,點M是棱AA′的中點,點O是對角線BD′的中點.
(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;
(Ⅱ)求二面角M-BC′-B′的大;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com