【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(  )

A. (1,2015)B. (1,2016)

C. [2,2 016]D. (2,2016)

【答案】D

【解析】

先利用三角函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì),畫出函數(shù)的圖象,再利用圖象數(shù)形結(jié)合即可發(fā)現(xiàn) 間的關(guān)系和范圍,最后求得所求范圍

作出函數(shù)的圖象,直線y=m交函數(shù)圖象如圖,不妨設(shè)a<b<c,由正弦曲線的對稱性,可得A(a,m)與B(b,m)關(guān)于直線x=對稱,因此a+b=1,當(dāng)直線y=m=1時(shí),由=1,解得x=2015.若滿足f(a)=f(b)=f(c),且a,b,c互不相等,由a<b<c可得1<c<2015,因此可得2<a+b+c<2016,即a+b+c∈(2,2016).故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),點(diǎn)是曲線上一點(diǎn),的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第26屆世界大學(xué)生夏季運(yùn)動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),分別是橢圓C的左、右焦點(diǎn),過且斜率不為零的動直線l與橢圓C交于A,B兩點(diǎn).

的周長;

若存在直線l,使得直線AB,與直線分別交于P,QR三個不同的點(diǎn),且滿足P,Q,Rx軸的距離依次成等比數(shù)列,求該直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點(diǎn)在軸上,虛軸長為4,且與雙曲線有相同漸近線.

1)求雙曲線的方程.

2)過點(diǎn)的直線與雙曲線的異支相交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x-4y+3=0.

1若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

2點(diǎn)P在直線l:2x-4y+3=0上,過點(diǎn)P作圓C的切線,切點(diǎn)記為M,求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信搶紅包”自2015年以來異;鸨谀硞微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面ABC,點(diǎn)D,EF分別為PC,AB,AC的中點(diǎn).

(Ⅰ)求證:平面DEF;

(Ⅱ)求證:

閱讀下面給出的解答過程及思路分析.

解答:(Ⅰ)證明:在中,因?yàn)?/span>E,F分別為ABAC的中點(diǎn),所以

因?yàn)?/span>平面DEF,平面DEF,所以平面DEF

(Ⅱ)證明:因?yàn)?/span>平面ABC,平面ABC,所以

因?yàn)?/span>D,F分別為PCAC的中點(diǎn),所以.所以

思路第(Ⅰ)問是先證,再證線面平行;

第(Ⅱ)問是先證,再證,最后證線線垂直

以上證明過程及思路分析中,設(shè)置了①~⑤五個空格,如下的表格中為每個空格給出了三個選項(xiàng),其中只有一個正確,請選出你認(rèn)為正確的選項(xiàng),并填寫在答題卡的指定位置.

空格

選項(xiàng)

A

B

C

A

B

C

A.線線垂直

B.線面垂直

C.線線平行

A.線線垂直

B.線面垂直

C.線線平行

A.線面平行

B.線線平行

C.線面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案