10.已知$\frac{sinα}{cos\frac{α}{2}}$=$\frac{8}{5}$,則cosα=$-\frac{7}{25}$.

分析 把已知等式變形求得$sin\frac{α}{2}$,代入二倍角余弦公式得答案.

解答 解:由$\frac{sinα}{cos\frac{α}{2}}$=$\frac{8}{5}$,得$\frac{2sin\frac{α}{2}cos\frac{α}{2}}{cos\frac{α}{2}}=\frac{8}{5}$,即$sin\frac{α}{2}=\frac{4}{5}$,
∴$cosα=1-2si{n}^{2}\frac{α}{2}=1-2×(\frac{4}{5})^{2}=-\frac{7}{25}$.
故答案為:$-\frac{7}{25}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡求值,訓(xùn)練了二倍角余弦公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下面四個(gè)推導(dǎo)過程,正確的有(1)(4).
(1)∵a,b∈R+,∴$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2;
(2)∵x,y∈R+,∴l(xiāng)gx+lgy≥2$\sqrt{lgx•lgy}$;
(3)∵a∈R,a≠0,∴$\frac{1}{a}$+a≥2$\sqrt{\frac{1}{a}•a}$=2;
(4)∵x,y∈R,xy<0,∴$\frac{x}{y}$+$\frac{y}{x}$=-[(-$\frac{x}{y}$)+(-$\frac{y}{x}$)]≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知sinα=2cosα,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x3+ax+b,x∈R為奇函數(shù),圖象與x軸相切.
(1)求函數(shù)y=f(x)的解析式;
(2)是否存在實(shí)數(shù)m,n,使函數(shù)g(x)=3-|f(x)|的定義域與值域均為[m,n]?若存在,請(qǐng)證明;若不存在,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.記不等式x2+x-6<0的解集為集合A,函數(shù)f(x)=$\frac{1}{\sqrt{{(lo{g}_{2}x)}^{2}-1}}$定義域?yàn)锽,則A∩B=(  )
A.(0,$\frac{1}{2}$)B.(2,+∞)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈Z|$\frac{x+2}{3-x}$≥0},B={x|-1≤x≤3},則A∩B=(  )
A.{x|-1≤x≤3}B.{x|-1≤x<3}C.{-1,0,1,2,3}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中含x2項(xiàng)為( 。
A.0B.-80x2C.80x2D.160x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,C,D是以AB為直徑的圓上的兩點(diǎn),AB=2AD=2$\sqrt{3}$,AC=BC,F(xiàn)是AB上的一點(diǎn),且AF=$\frac{1}{3}$AB,將圓沿AB折起,使點(diǎn)C在平面ABD的正投影E在線段BD上,已知CE=$\sqrt{2}$,平面EFMN分別交AC、DC于點(diǎn)M、N.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥MN;
(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某洗衣機(jī)生產(chǎn)流水線上有三條不同的作業(yè)線,每條作業(yè)線上的質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該洗衣機(jī)的等級(jí).若S≥5,則該洗衣機(jī)為特等品;若4≤S≤5,則該洗衣機(jī)為一等品;若S<4,則該洗衣機(jī)不合格.現(xiàn)從這一批洗衣機(jī)中,隨機(jī)抽取10臺(tái)作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào)A1A2A3A4A5
質(zhì)量指標(biāo)(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)
產(chǎn)品編號(hào)A6A7A8A9A10
質(zhì)量指標(biāo)(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)從編號(hào)為A1到A6的6臺(tái)洗衣機(jī)中,隨機(jī)抽取2臺(tái),
①用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2臺(tái)洗衣機(jī)中,恰有一臺(tái)是一等品一臺(tái)不合格”,求事件B發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案