小王參加人才招聘會,分別向A,B兩個公司投遞個人簡歷.假定小王得到A公司面試的概率為,得到B公司面試的概率為p,且兩個公司是否讓其面試是獨立的,記X為小王得到面試的公司個數(shù).若X=0時的概率P(X=0)=,則隨機變量X的數(shù)學期望為________.
由題意,知兩個公司是否讓小王面試是獨立的,故P(X=0)=×(1-p)=,解得p.
P(X=2)=×.
所以P(X=1)=1-P(X=0)-P(X=2)=1-.由期望的計算公式,可得E(X)=0×+1×+2×
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,對人體健康和大氣環(huán)境質(zhì)量的影響很大。我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標.
某市環(huán)保局從360天的市區(qū)PM2.5監(jiān)測數(shù)據(jù)中,隨機抽取l5天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).

(1)從這l5天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達到一級的天數(shù),求的分布列;
(2)以這l5天的PM2.5日均值來估計這360天的空氣質(zhì)量情況,則其中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了調(diào)查學生的視力情況,隨機抽查了一部分學生的視力,將調(diào)查結(jié)果分組,分組區(qū)間為,經(jīng)過數(shù)據(jù)處理,得到如下頻率分布表
分組
頻數(shù)
頻率

3
0.06

6
0.12

25





2
0.04
合計

1.00
(Ⅰ)求頻率分布表中未知量,,的值
(Ⅱ)從樣本中視力在的所有同學中隨機抽取兩人,求兩人視力差的絕對值低于的概率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

連續(xù)拋擲兩枚正方體骰子(它們的六個面分別標有數(shù)字1,2,3,4,5,6),記所得朝上的面的點數(shù)分別為x,y,過坐標原點和點P(xy)的直線的傾斜角為θ,則θ>60°的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,ξ=0;當兩條棱平行時,ξ的值為兩條棱之間的距離;當兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校高一、高二兩個年級進行乒乓球?qū)官,每個年級選出3名學生組成代表隊,比賽規(guī)則是:①按“單打、雙打、單打”順序進行三盤比賽;②代表隊中每名隊員至少參加一盤比賽,但不能參加兩盤單打比賽.若每盤比賽中高一、高二獲勝的概率分別為,.
(1)按比賽規(guī)則,高一年級代表隊可以派出多少種不同的出場陣容?
(2)若單打獲勝得2分,雙打獲勝得3分,求高一年級得分ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關(guān),對本班48人進行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上面的2×2列聯(lián)表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果隨機變量XN(-1,σ2),且P(-3≤X≤-1)=0.4,則P(X≥1)等于(  ).
A.0.4B.0.3C.0.2 D.0.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

根據(jù)以往資料統(tǒng)計,大學生購買某品牌平板電腦時計劃采用分期付款的期數(shù)ζ的分布列為
ζ
1
2
3
P
0.4
0.25
0.35
(1)若事件A={購買該平板電腦的3位大學生中,至少有1位采用1期付款},求事件A的概率P(A);
(2)若簽訂協(xié)議后,在實際付款中,采用1期付款的沒有變化,采用2、3期付款的都至多有一次改付款期數(shù)的機會,其中采用2期付款的只能改為3期,概率為;采用3期付款的只能改為2期,概率為.數(shù)碼城銷售一臺該平板電腦,實際付款期數(shù)與利潤(元)的關(guān)系為

1
2
3
η
200
250
300
(3)求的分布列及期望E().

查看答案和解析>>

同步練習冊答案