(本題滿分12分)

如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn)。

(1)求證:CD⊥AE;

(2)求證:PD⊥面ABE。

 

【答案】

(1)要證明線線垂直,則只要根據(jù)線面垂直的性質(zhì)定理可以證明。

(2)對(duì)于線面垂直的證明,一般先證明線線垂直,然后結(jié)合線面垂直的判定定理得到,關(guān)鍵是證明AE⊥PD和BA⊥PD。

【解析】

試題分析:(I)證明:∵PA⊥底面ABCD

∴CD⊥PA

又CD⊥AC,PA∩AC=A,

故CD⊥面PAC 

AE面PAC,故CD⊥AE 

(II)證明:PA=AB=BC,∠ABC=60°,

故PA=ACE是PC的中點(diǎn),故AE⊥PC

由(I)知CD⊥AE,從而AE⊥面PCD,

故AE⊥PD

易知BA⊥PD,故PD⊥面ABE 

考點(diǎn):線線垂直和線面垂直

點(diǎn)評(píng):本試題考查了空間中線線與線面的位置關(guān)系的運(yùn)用,關(guān)鍵是熟練的結(jié)合線線與線面垂直的判定定理和性質(zhì)定理來得到證明,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案