設(shè)

(1)證明A>;  

(2)

(1)見(jiàn)解析    (2) 見(jiàn)解析


解析:

(1)A

=

(2) 

         

          ∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山一模)設(shè)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數(shù),且0<λ<1.
(1)求函數(shù)f(x)的極值;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|
ex-1
x
-1|<a
成立;
(3)設(shè)λ1,λ2R+,且λ12=1,證明:對(duì)任意正數(shù)a1,a2都有:
a
λ1
1
+a
λ2
2
λ1a1+λ2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•嘉興一模)已知f(x)=
1
x2-4
(x<-2)
,f(x)的反函數(shù)為g(x),點(diǎn)A(an ,-
1
an+1
)
在曲線y=g(x)上(n∈N*),且a1=1
(Ⅰ)求y=g(x)的表達(dá)式;
(Ⅱ)證明數(shù)列{
1
an2
}為等差數(shù)列;
(Ⅲ)設(shè)bn=
1
1
an
+
1
an+1
,記Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x,g(x)=3-x2
(1)求函數(shù)F(x)=f(x)g(x)的極值;
(2)設(shè)m是負(fù)實(shí)數(shù),求函數(shù)H(x)=f(x)g(x)-m的零點(diǎn)的個(gè)數(shù);
(3)如果存在正實(shí)數(shù)a,b,c,使得f(a)g(b)=f(b)g(c)=f(c)g(a)>0,試證明a=b=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時(shí),f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=
x1+x2
(x>0)
,f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(1)證明:函數(shù)g(x)在(0,1]單調(diào)遞增;
(2)求I的長(zhǎng)度(注:區(qū)間(α,β)的長(zhǎng)度定義為β-α);
(3)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時(shí),求I長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案