精英家教網 > 高中數學 > 題目詳情

設橢圓數學公式的兩焦點為F1,F(xiàn)2,M為橢圓上任一點,P為△F1MF2的內心,連接MP并延長交橢圓長軸于N,則數學公式的值為


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
D
分析:由于三角形的內心是三個內角的平分線的交點,根據三角形內角平分線性質定理把所求的比值轉化為三角形邊長之間的比值關系來求解.
解答:解:如圖,連接PF1,PF2.在△MF1P中,F(xiàn)1P是∠MF1N的角平分線,
根據三角形內角平分線性質定理,,
同理可得
則有
根據等比定理=
設F1到MN的距離為d
===
故選:D
點評:本題主要考查圓錐曲線的定義的應用,試題在平面幾何中的三角形內角平分線性質定理、等比定理和圓錐曲線的定義之間的綜合應用,在解決涉及到圓錐曲線上的點與焦點之間的關系的問題中,圓錐曲線的定義往往是解題的突破口.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0)
,F2(
3
,0)
,離心率e=
3
2

(1)求此橢圓的方程;
(2)設直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值;
(3)以此橢圓的上頂點B為直角頂點作橢圓的內接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(1)求此橢圓的方程;
(2)設直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(Ⅰ)求此橢圓的方程.
(Ⅱ)設直線y=
x
2
+m
與橢圓交于P,Q兩點,且|PQ|的長等于橢圓的短軸長,求m的值.
(Ⅲ)若直線y=
x
2
+m
與此橢圓交于M,N兩點,求線段MN的中點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省長春十一高高二(下)期初數學試卷(文科)(解析版) 題型:解答題

已知橢圓的兩焦點為F1(-,0),F(xiàn)2,0),離心率e=
(1)求此橢圓的方程;
(2)設直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

同步練習冊答案