A. | 5 | B. | 4$+\sqrt{7}$ | C. | 4$+\sqrt{17}$ | D. | 4$+\sqrt{19}$ |
分析 以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閥軸方向建立平面直角坐標(biāo)系,則根據(jù)大風(fēng)車的半徑為2m,圓上最低點(diǎn)O離地面1米,12s秒轉(zhuǎn)動(dòng)一圈,我們易得到到f(t)與t間的函數(shù)關(guān)系式,求出P的坐標(biāo),即可求出點(diǎn)P到點(diǎn)A的距離與點(diǎn)P的高度之和.
解答 解:以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閥軸方向建立平面直角坐標(biāo)系,則根據(jù)大風(fēng)車的半徑為2m,圓上最低點(diǎn)O離地面1米,12s秒轉(zhuǎn)動(dòng)一圈,
設(shè)∠OO1P=θ,運(yùn)動(dòng)t(s)后與地面的距離為f(t).
又T=12,∴θ=$\frac{π}{6}$t,∴f(t)=3-2cos$\frac{π}{6}$t,t≥0;
風(fēng)車圓周上一點(diǎn)M從最低點(diǎn)O開始,逆時(shí)針方向旋轉(zhuǎn)40秒后到達(dá)P點(diǎn),θ=6π+$\frac{2}{3}$π,P($\sqrt{3}$,1)
∴點(diǎn)P的高度3-2×(-$\frac{1}{2}$)=4
∵A(0,-3),∴AP=$\sqrt{3+16}$=$\sqrt{19}$,
∴點(diǎn)P到點(diǎn)A的距離與點(diǎn)P的高度之和為4+$\sqrt{19}$.
故選:D.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是在實(shí)際問題中建立三角函數(shù)模型,在建立函數(shù)模型的過程中,以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閥軸方向建立平面直角坐標(biāo)系,將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{6}$ | B. | $\frac{\sqrt{2}}{6}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com