【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,設(shè)四棱柱的外接球的球心為O,動(dòng)點(diǎn)P在正方形ABCD的邊上,射線OP交球O的表面于點(diǎn)M,現(xiàn)點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A運(yùn)動(dòng)一次,則點(diǎn)M經(jīng)過的路徑長(zhǎng)為(
A.
B.2 π
C.
D.4 π

【答案】A
【解析】解:由題意,點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A運(yùn)動(dòng)一次,則點(diǎn)M經(jīng)過的路徑是四段大圓上的相等的。 ∵正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,
∴四棱柱的外接球的直徑為其對(duì)角線,長(zhǎng)度為 =2 ,
∴四棱柱的外接球的半徑為 ,∴∠AOB= ,
∴AB所在大圓,所對(duì)的弧長(zhǎng)為 = ,
∴點(diǎn)M經(jīng)過的路徑長(zhǎng)為
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函數(shù)h(x)圖象上任意兩點(diǎn),且滿足 >1,求實(shí)數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥ 成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點(diǎn)E在線段CD上.
(1)求證:PE⊥BD;
(2)過點(diǎn)D作DM⊥BC交BC于點(diǎn)M,點(diǎn)N為PB中點(diǎn),若PE∥平面DMN,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線都經(jīng)過點(diǎn).直線平行,且與橢圓交于兩點(diǎn),直線軸分別交于兩點(diǎn).

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面,,中點(diǎn).

(1)求證:平面;

(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同條件下各打靶10次,每次打靶所得的環(huán)數(shù)如圖所示.

填寫下表,請(qǐng)從下列角度對(duì)這次結(jié)果進(jìn)行分析.

命中9環(huán)及以上的次數(shù)

平均數(shù)

中位數(shù)

方差

(1)命中9環(huán)及以上的次數(shù)(分析誰的成績(jī)好些);

(2)平均數(shù)和中位數(shù)(分析誰的成績(jī)好些);

(3)方差(分析誰的成績(jī)更穩(wěn)定);

(4)折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)(分析誰更有潛力).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程個(gè)不同實(shí)數(shù)根,則n的值不可能為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣2cos2x,下面結(jié)論中錯(cuò)誤的是(
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關(guān)于x= 對(duì)稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個(gè)單位得到
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______

查看答案和解析>>

同步練習(xí)冊(cè)答案