【題目】已知函數(shù),其中.

1)當時,求證:過原點且與曲線相切的直線有且只有一條;

2)當時,不等式恒成立,求實數(shù)的取值范圍.

【答案】1)見解析(2

【解析】

(1) 根據(jù)導數(shù)的幾何意義,求出函數(shù)上任意一點處的切線方程,根據(jù)過原點知有唯一解即可求證;

(2) 構造函數(shù),求導后再分類討論,根據(jù)導數(shù)和函數(shù)的單調性和最值的關系即可求出a的范圍.

1)函數(shù)的導函數(shù)為.

曲線上任意一點處的切線方程為.

此切線過原點當且僅當,即.

,則方程有且只有一個解

曲線在原點處的切線過原點.

綜上所述,無論取什么值,過原點且與曲線相切的直線都有且只有一條,即直線.

2)令,

.

①若,則,故上單調遞增.

因此,當時,;

②若,則.

時,.

,則.

而當時,,,于是:

,則,故上單調遞增.

因此,當時,,進而,

上單調遞增.

因此,當時,

,則存在,使得.

時,,

,故上單調遞減.

因此,當時,,進而

上單調遞減.

因此,當時,.

綜上所述,實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市政府為減輕汽車尾氣對大氣的污染,保衛(wèi)藍天,鼓勵廣大市民使用電動交通工具出行,決定為電動車(含電動自行車和電動汽車)免費提供電池檢測服務.現(xiàn)從全市已掛牌照的電動車中隨機抽取100輛委托專業(yè)機構免費為它們進行電池性能檢測,電池性能分為需要更換、尚能使用、較好、良好四個等級,并分成電動自行車和電動汽車兩個群體分別進行統(tǒng)計,樣本分布如圖.

(1)采用分層抽樣的方法從電池性能較好的電動車中隨機抽取9輛,再從這9輛中隨機抽取2輛,求至少有一輛為電動汽車的概率;

(2)為進一步提高市民對電動車的使用熱情,市政府準備為電動車車主一次性發(fā)放補助,標準如下:①電動自行車每輛補助300元;②電動汽車每輛補助500元;③對電池需要更換的電動車每輛額外補助400元.試求抽取的100輛電動車執(zhí)行此方案的預算;并利用樣本估計總體,試估計市政府執(zhí)行此方案的預算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著2022年北京冬奧會的臨近,中國冰雪產業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖.則下面結論中正確的是( )

2012-2018年,中國雪場滑雪人數(shù)逐年增加;②2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;③中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;④2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

A.①②③B.②③④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=|xa|+|x+b|ab0.

1)當a1,b1時,求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年,全國各地區(qū)堅持穩(wěn)中求進工作總基調,經濟運行總體平穩(wěn),發(fā)展水平邁上新臺階,發(fā)展質量穩(wěn)步上升,人民生活福祉持續(xù)增進,全年最終消費支出對國內生產總值增長的貢獻率為57.8%.下圖為2019年居民消費價格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)

下列結論中不正確的是(

A.2019年第三季度的居民消費價格一直都在增長

B.20187月份的居民消費價格比同年8月份要低一些

C.2019年全年居民消費價格比2018年漲了2.5%以上

D.20193月份的居民消費價格全年最低

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數(shù)學水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學長期堅持貫徹以人為本,因材施教的教育理念,每年都會在校文化節(jié)期間舉行“數(shù)學素養(yǎng)能力測試”和“語文素養(yǎng)能力測試”兩項測試,以給學生課外興趣學習及輔導提供參考依據(jù).成績分為,,五個等級(等級,,,,分別對應5分,4分,3分,2分,1分).某班學生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“語文素養(yǎng)能力測試”科目的成績?yōu)?/span>的考生有3人.

1)求該班“數(shù)學素養(yǎng)能力測試”的科目平均分以及“數(shù)學素養(yǎng)能力測試”科目成績?yōu)?/span>的人數(shù);

2)若該班共有9人得分大于7分,其中有210分,39分,48分.從這9人中隨機抽取三人,設三人的成績之和為,求

3)從該班得分大于7分的9人中選3人即甲,乙,丙組隊參加學校內的“數(shù)學限時解題挑戰(zhàn)賽”.規(guī)則為:每隊首先派一名隊員參加挑戰(zhàn)賽,在限定的時間,若該生解決問題,即團隊挑戰(zhàn)成功,結束挑戰(zhàn);若解決問題失敗,則派另外一名隊員上去挑戰(zhàn),直至派完隊員為止.通過訓練,已知甲,乙,丙通過挑戰(zhàn)賽的概率分別是,,問以怎樣的先后順序派出隊員,可使得派出隊員數(shù)目的均值達到最小?(只需寫出結果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的標準方程是,設是橢圓的左焦點,為直線上任意一點,過的垂線交橢圓于點,.

1)證明:線段平分線段(其中為坐標原點);

2)當最小時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,當x[0,1]時,fx)=x,若在區(qū)間(﹣1,1]內,有兩個零點,則實數(shù)m的取值范圍是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案