4.已知數(shù)列{an}滿足a1=1,an•an+1=2n,n∈N,Sn是數(shù)列{an}的前n項(xiàng)和,則S10等于( 。
A.63B.93C.126D.1023

分析 數(shù)列{an}滿足a1=1,an•an+1=2n,n∈N,n=1時(shí)得a2=2.n≥2時(shí),$\frac{{a}_{n}{a}_{n+1}}{{a}_{n-1}{a}_{n}}$=$\frac{{a}_{n+1}}{{a}_{n-1}}$=2.因此數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等比數(shù)列,公比為2.利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:∵數(shù)列{an}滿足a1=1,an•an+1=2n,n∈N,
∴n=1時(shí),1×a2=2,解得a2=2.
n≥2時(shí),$\frac{{a}_{n}{a}_{n+1}}{{a}_{n-1}{a}_{n}}$=$\frac{{a}_{n+1}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2,
∴an+1=2an-1
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等比數(shù)列,公比為2.
∴S10=(1+2+22+23+24)+(2+22+…+25
=$\frac{{2}^{5}-1}{2-1}$+$\frac{2({2}^{5}-1)}{2-1}$
=3×(25-1)
=93.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的定義通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,若sinA、sinB、sinC成公比為q的等比數(shù)列,則q的取值范圍為($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若α∈[-$\frac{π}{4},\frac{π}{4}$],β∈[-$\frac{π}{8}$,$\frac{π}{8}$],且滿足$\left\{\begin{array}{l}{{α}^{3}+sinα-2k=0}\\{4{β}^{3}+sinβcosβ+k=0}\end{array}\right.$,k∈R,則cos(α+2β)的值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中,是偶函數(shù)且不存在零點(diǎn)的是( 。
A.y=x2B.y=$\sqrt{x}$C.y=log2xD.y=-($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}滿足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=${log}_{\sqrt{2}}$an,數(shù)列{anbn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求和:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)+b(ω>0)的最小正周期為π,最大值為2$\sqrt{2}$.
(1)求實(shí)數(shù)ω,b的值,并寫(xiě)出相應(yīng)的f(x)的解析式;
(2)是否存在x∈[0,π],滿足f(x)=2$\sqrt{2}$,若存在,求出x的值;若不存在,說(shuō)明理由;
(3)求函數(shù)F(x)=f(x)-f(x-$\frac{π}{4}$)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求(x+2$\sqrt{y}$)5的二項(xiàng)展開(kāi)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知log34=$\frac{1-a}{a}$,則log23=( 。
A.$\frac{a}{2-2a}$B.$\frac{2a}{1-a}$C.$\frac{2a}{a-1}$D.$\frac{a}{2a-2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案