(2012•安徽)若x,y滿足約束條件
x≥0
x+2y≥3
2x+y≤3
,則z=x-y的最小值是( 。
分析:畫出約束條件表示的可行域,推出三角形的三個點的坐標,直接求出z=x-y的最小值.
解答:解:約束條件
x≥0
x+2y≥3
2x+y≤3
,表示的可行域如圖,
x=0
2x+y=3
解得A(0,3),
x=0
x+2y=3
解得B(0,
3
2
)、
x+2y=3
2x+y=3
解得C(1,1);
由A(0,3)、B(0,
3
2
)、C(1,1);
所以t=x-y的最大值是1-1=0,最小值是0-3=-3;
故選A.
點評:本題考查簡單的線性規(guī)劃的應(yīng)用,正確畫出約束條件的可行域是解題的關(guān)鍵,?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)若某產(chǎn)品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標準值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
分組 頻數(shù) 頻率
[-3,-2) 0.10
[-2,-1) 8
(1,2] 0.50
(2,3] 10
(3,4]
合計 50 1.00
(Ⅰ)將上面表格中缺少的數(shù)據(jù)填在答題卡的相應(yīng)位置;
(Ⅱ)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標準值的差落在區(qū)間(1,3]內(nèi)的概率;
(Ⅲ)現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)若x,y滿足約束條件
x≥0
x+2y≥3
2x+y≤3
,則x-y的取值范圍是
[-3,0]
[-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽)若平面向量
a
,
b
滿足|2
a
-
b
|≤3,則
a
b
的最小值是
-
9
8
-
9
8

查看答案和解析>>

同步練習(xí)冊答案