精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,橢圓的標準方程為,右焦點為,右準線為,短軸的一個端點. 設原點到直線的距離為,點到的距離為. 若,則橢圓的離心率為    
依題意,作,則,又,解得,而橢圓準線的方程為,,設直線軸交于,則點到直線的距離,∵,
,整理的,兩邊平方,,∴,又,
.

【考點定位】橢圓的性質、點到直線的距離公式,考查分析轉化能力、計算能力.中等題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的長軸長為4,且過點
(1)求橢圓的方程;
(2)設、是橢圓上的三點,若,點為線段的中點,、兩點的坐標分別為、,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,橢圓的右焦點為,離心率為
分別過,的兩條弦,相交于點(異于,兩點),且
(1)求橢圓的方程;
(2)求證:直線的斜率之和為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的方程為,其離心率為,經過橢圓焦點且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:與橢圓C交于A、B兩點,P為橢圓上的點,O為坐標原點,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設AB是橢圓的長軸,點C在上,且,若AB=4,,則的兩個焦點之間的距離為________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓的方程為,過點作圓的兩條切線,切點分別為、,直線恰好經過橢圓的右頂點和上頂點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓垂直于軸的一條弦,所在直線的方程為是橢圓上異于、的任意一點,直線、分別交定直線于兩點、,求證.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩個焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,設點是橢圓上任一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線兩點.  
證明:以線段為直徑的圓恒過軸上的定點.

查看答案和解析>>

同步練習冊答案