【題目】某同學(xué)計(jì)劃用他姓名的首字母,身份證的后4位數(shù)字(4位數(shù)字都不同)以及3個(gè)符號(hào)設(shè)置一個(gè)六位的密碼.若必選,且符號(hào)不能超過(guò)兩個(gè),數(shù)字不能放在首位和末位,字母和數(shù)字的相對(duì)順序不變,則他可設(shè)置的密碼的種數(shù)為( )
A.864B.1009C.1225D.1441
【答案】D
【解析】
先按照符號(hào)的個(gè)數(shù)分類,利用分步乘法計(jì)數(shù)原理分別計(jì)算每類的情況種數(shù),再利用分類加法計(jì)數(shù)原理求解即可.
①當(dāng)符號(hào)的個(gè)數(shù)為0時(shí),六位密碼由字母及身份證的后4位數(shù)字組成,此時(shí)只有1種情況;
②當(dāng)符號(hào)的個(gè)數(shù)為1時(shí),六位密碼由母,3個(gè)數(shù)字及1個(gè)符號(hào)組成.
若末位是符號(hào),則首位是字母,可能的種數(shù)為;
若末位是字母,則可能的種數(shù)為;
③當(dāng)符號(hào)的個(gè)數(shù)為2時(shí),六位密碼由字母,2個(gè)數(shù)字及2個(gè)符號(hào)組成.
若首位和末位均為符號(hào),則可能的種數(shù)為;
若首位和末位均為字母,則可能的種數(shù)為;
若首位和末位一個(gè)是字母、一個(gè)是符號(hào),則可能的種數(shù)為.
故他可設(shè)置的密碼的種數(shù)為.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,焦距為,直線過(guò)橢圓的左焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與軸交于點(diǎn)是橢圓上的兩個(gè)動(dòng)點(diǎn),的平分線在軸上,.試判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某地區(qū)小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績(jī),由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;
(2)若將頻率視為概率,從該地區(qū)小學(xué)的這些學(xué)生中隨機(jī)抽取3人,記這3人中成績(jī)位于區(qū)間內(nèi)的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列滿足n≥2時(shí),,則稱數(shù)列(n)為的“L數(shù)列”.
(1)若,且的“L數(shù)列”為,求數(shù)列的通項(xiàng)公式;
(2)若,且的“L數(shù)列”為遞增數(shù)列,求k的取值范圍;
(3)若,其中p>1,記的“L數(shù)列”的前n項(xiàng)和為,試判斷是否存在等差數(shù)列,對(duì)任意n,都有成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:,其焦點(diǎn)到準(zhǔn)線的距離為2.直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線與,與交于點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)是棱的中點(diǎn).
(1)求證:平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我國(guó)瓷器的歷史上六棱形的瓷器非常常見,因?yàn)榱,八是中?guó)人的吉利數(shù)字,所以好多器都做成六棱形和八棱形,數(shù)學(xué)李老師有一個(gè)正六棱柱形狀的筆筒,底面邊長(zhǎng)為6cm,高為18cm(底部及筒壁厚度忽略不計(jì)),一長(zhǎng)度為cm的圓鐵棒l(粗細(xì)忽略不計(jì))斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對(duì)的側(cè)棱上.一位小朋友玩耍時(shí),向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個(gè)圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD為直角梯形,,,,,且平面平面ABCD.
(1)求證:;
(2)在線段PA上是否存在一點(diǎn)M,使二面角M-BC-D的大小為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為,③∠ABC.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點(diǎn)為F.
(1)在線段AB上是否存在一點(diǎn)G,使得AF平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請(qǐng)說(shuō)明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com