已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)都成立.
(1)求a1,a2的值;
(2)設(shè)a1>0,數(shù)列前n項(xiàng)和為Tn,當(dāng)n為何值時,Tn最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng)為
,公差為
,等比數(shù)列
的首項(xiàng)為
,公比為
,
.
(1)求數(shù)列與
的通項(xiàng)公式;
(2)設(shè)第個正方形的邊長為
,求前
個正方形的面積之和
.
(注:表示
與
的最小值.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求證:數(shù)列是等差數(shù)列并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anan+1,求證:b1+b2+…+bn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式,并證明
是等差數(shù)列;
(2)若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=Sn-(n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)無窮數(shù)列的首項(xiàng)
,前
項(xiàng)和為
(
),且點(diǎn)
在直線
上(
為與
無關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列(
)為等比數(shù)列;
(2)記數(shù)列的公比為
,數(shù)列
滿足
,設(shè)
,求數(shù)列
的前
項(xiàng)和
;
(3)(理)若(1)中無窮等比數(shù)列(
)的各項(xiàng)和存在,記
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項(xiàng)和為
,數(shù)列
滿足:
。
(1)求數(shù)列的通項(xiàng)公式
;
(2)求數(shù)列的通項(xiàng)公式
;
(3)若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足
,
,
,
是數(shù)列
的前
項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
(�。┣髷�(shù)列的通項(xiàng);
(ⅱ)若數(shù)列滿足
,數(shù)列
滿足
,試比較數(shù)列
前
項(xiàng)和
與
前
項(xiàng)和
的大�。�
(2)若對任意,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com