分析 (Ⅰ)由已知作出莖葉圖,并比較甲班10名同學(xué)成績的方差與乙班10名同學(xué)成績的方差的大。
(Ⅱ)X取值為0,1,2,3,求出相應(yīng)的概率,可得X的分布列和期望.
解答 解:(Ⅰ)由已知作出莖葉圖,得:
由莖葉圖得到甲班10名同學(xué)成績的方差大于乙班10名同學(xué)成績的方差.
(Ⅱ)由已知得甲班有4人及格,乙有5人及格,X的可能取值為0,1,2,3,
P(X=0)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{15}$,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{3}$,
P(X=2)=$\frac{{C}_{4}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{13}{30}$
P(X=3)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$×$\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{6}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{15}$ | $\frac{1}{3}$ | $\frac{13}{30}$ | $\frac{1}{6}$ |
點(diǎn)評 本題考查莖葉圖的作法及應(yīng)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 5 | 10 | 15 | 47 | x |
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 2 | 3 | 10 | y | 2 |
女士 | 男士 | 總計(jì) | |
網(wǎng)購達(dá)人 | |||
非網(wǎng)購達(dá)人 | |||
總計(jì) |
P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,6] | C. | [-4,+∞) | D. | [6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com