已知函數(shù)f(x)=logax+x-b(a>0,且a≠1).當(dāng)2<a<3<b<4時(shí),函數(shù)f(x)的零點(diǎn)x∈(n,n+1),n∈N*,則n=   
【答案】分析:把要求零點(diǎn)的函數(shù),變成兩個(gè)基本初等函數(shù),根據(jù)所給的a,b的值,可以判斷兩個(gè)函數(shù)的交點(diǎn)的所在的位置,同所給的區(qū)間進(jìn)行比較,得到n的值.
解答:解:設(shè)函數(shù)y=logax,m=-x+b
根據(jù)2<a<3<b<4,
對于函數(shù)y=logax 在x=2時(shí),一定得到一個(gè)值小于1,
在同一坐標(biāo)系中劃出兩個(gè)函數(shù)的圖象,判斷兩個(gè)函數(shù)的圖形的交點(diǎn)在(2,3)之間,
∴函數(shù)f(x)的零點(diǎn)x∈(n,n+1)時(shí),n=2,
故答案為:2
點(diǎn)評:本題考查函數(shù)零點(diǎn)的判定定理,是一個(gè)基本初等函數(shù)的圖象的應(yīng)用,這種問題一般應(yīng)用數(shù)形結(jié)合思想來解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案