(2013•朝陽區(qū)二模)若直線l與圓C:
x=2cosθ
y=-1+2sinθ
(θ為參數(shù))相交于A,B兩點,且弦AB的中點坐標是(1,-2),則直線L的傾斜角為
π
4
π
4
分析:將圓的方程化為普通方程,找出圓心坐標,求出圓心與弦AB中點確定直線方程的斜率,利用垂徑定理得到此直線與直線l垂直,利用兩直線垂直時斜率的乘積為-1求出直線l的斜率,即可確定出直線l的傾斜角.
解答:解:將圓方程化為普通方程得:x2+(y+1)2=4,
∴圓心坐標為(0,-1),
∵弦AB的中點坐標是(1,-2),
∴圓心與中點連線斜率為
-1+2
0-1
=-1,
∴直線l的斜率為1,
則直線l的傾斜角為
π
4

故答案為:
π
4
點評:此題考查了直線與圓的位置關(guān)系,直線的傾斜角,以及參數(shù)方程化為普通方程,解題的關(guān)鍵是根據(jù)題意得出圓心與弦AB中點連線垂直與直線l.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)為了解某市今年初二年級男生的身體素質(zhì)狀況,從該市初二年級男生中抽取了一部分學(xué)生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學(xué)生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成[2,4),[4,6),[6,8),[8,10),[10,12]五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在10米到12米之間.
(Ⅰ)求實數(shù)a的值及參加“擲實心球”項目測試的人數(shù);
(Ⅱ)根據(jù)此次測試成績的結(jié)果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀的概率;
(Ⅲ)若從此次測試成績不合格的男生中隨機抽取2名學(xué)生再進行其它項目的測試,求所抽取的2名學(xué)生來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)已知等差數(shù)列{an}的公差為-2,a3是a1與a4的等比中項,則首項a1=
8
8
,前n項和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|; 
②函數(shù)F(x)是奇函數(shù);
③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)點P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點,則
PA
PC1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函數(shù)f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步練習(xí)冊答案