分析 (1)$f(x)={(\frac{1}{2})^x}+m{x^2}$在(0,1)上有“溜點”,利用定義,推出$4mx-1={(\frac{1}{2})^x}$在(0,1)上有解,轉(zhuǎn)化h(x)=4mx-1與$g(x)={(\frac{1}{2})^x}$的圖象在(0,1)上有交點,然后求解即可.
(2)推出a>0,$lg[\frac{a}{{{{(x+1)}^2}+1}}]=lg(\frac{a}{{{x^2}+1}})+lg(\frac{a}{2})$在(0,1)上有解,設(shè)$y=\frac{2x+1}{{{x^2}+2x+2}}$,令t=2x+1,由x∈(0,1)則t∈(1,3),利用基本不等式求解$\frac{1}{2}<\frac{2x+1}{{{x^2}+2x+2}}≤\frac{{\sqrt{5}-1}}{2}$,得到實數(shù)a的取值范圍.
解答 (本題滿分12分)
解:(1)$f(x)={(\frac{1}{2})^x}+m{x^2}$在(0,1)上有“溜點”,
即f(x+1)=f(x)+f(1)在(0,1)上有解,
即${(\frac{1}{2})^{x+1}}+m{(x+1)^2}={(\frac{1}{2})^x}+m{x^2}+\frac{1}{2}+m$在(0,1)上有解,
整理得$4mx-1={(\frac{1}{2})^x}$在(0,1)上有解,
從而h(x)=4mx-1與$g(x)={(\frac{1}{2})^x}$的圖象在(0,1)上有交點,
故h(1)>g(1),即$4m-1>\frac{1}{2}$,得$m>\frac{3}{8}$,
(2)由題已知a>0,且$lg[\frac{a}{{{{(x+1)}^2}+1}}]=lg(\frac{a}{{{x^2}+1}})+lg(\frac{a}{2})$在(0,1)上有解,
整理得$a=\frac{{2({x^2}+1)}}{{{x^2}+2x++2}}$,又$\frac{{2({x^2}+1)}}{{{x^2}+2x+2}}=2(1-\frac{2x+1}{{{x^2}+2x+2}})$.
設(shè)$y=\frac{2x+1}{{{x^2}+2x+2}}$,令t=2x+1,由x∈(0,1)則t∈(1,3).
于是$y=\frac{4t}{{{t^2}+2t+5}}=\frac{4}{{t+\frac{5}{t}+2}}$$2\sqrt{5}+2≤t+\frac{5}{t}+2<8$則$\frac{1}{2}<\frac{2x+1}{{{x^2}+2x+2}}≤\frac{{\sqrt{5}-1}}{2}$.
從而$3-\sqrt{5}≤\frac{{2({x^2}+1)}}{{{x^2}+2x+2}}<1$.
故實數(shù)a的取值范圍是$[3-\sqrt{5},1)$.
點評 本題考查函數(shù)與方程的應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (-∞,-2) | C. | (2,﹢∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com