精英家教網(wǎng)四棱錐P-ABCD的底面為菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E為PC的中點.
(1)求二面角E-AD-C的正切值;
(2)在線段PC上是否存在一點M,使PC⊥平面MBD成立?若存在,求出MC的長;若不存在,請說明理由.
分析:(1)連AC、BD交于點O,連OE,過點O作OF⊥AD于點F,連EF,可得∠EFO就是所求二面角的平面角,解三角形EFO,即可得到二面角E-AD-C的正切值;
(2)過點B作BM⊥PC于點M,連DM,可得△PBC≌△PDC,進而得到DM⊥PC,BM⊥PC,由線面垂直的判定定理,即可得到PC⊥平面MBD.
解答:解:精英家教網(wǎng)(1)連AC、BD交于點O,連OE,則OE∥PA,從而OE⊥平面ABCD,
過點O作OF⊥AD于點F,連EF,則易證∠EFO就是所求二面角的平面角.
由ABCD是菱形,且∠ABC=120°,AB=1,得OF=
3
4
,
OE=
1
2
PA=
6
2
,
∴在Rt△OEF中,有tan∠EFO=
OE
OF
=2
2
.(5分)
(2)證明:過點B作BM⊥PC于點M,連DM,
則∵△PBC≌△PDC,∴DM⊥PC,
∴PC⊥平面MBD,在△PBC中,PB=
7
,BC=1,PC=3

  cos∠PCB=
1+9-7
2•1•3
=
1
2
  MC=BCcos∠PCB=
1
2
,
∴在PC上存在點M,且MC=
1
2
時,有PC⊥平面MBD.(10分)
點評:本題考查的知識點是二面角的平面角及求法,直線與平面垂直的判定,其中(1)的關(guān)鍵是求出二面角的平面角,(2)的關(guān)鍵是證明DM⊥PC,BM⊥PC.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD的底面是邊長為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是PA的中點.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證:PC∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側(cè)棱PA⊥底面ABCD,側(cè)面PBC內(nèi)有BE⊥PC于E,且BE=
6
3
a,試在AB上找一點F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,O是該正方形的中心,P是平面ABCD外一點,PO⊥底面ABCD,E是PC的中點.求證:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱錐P-ABCD的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的高為PO,若Q為CD中點,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
則x+y=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四棱錐P-ABCD的三視圖如圖所示,則這個四棱錐的體積為(  )
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步練習冊答案