已知函數(shù).
(1)若函數(shù)內(nèi)單調(diào)遞增,求的取值范圍;
(2)若函數(shù)處取得極小值,求的取值范圍.
(1);(2).

試題分析:(1)首先求導(dǎo)數(shù),內(nèi)單調(diào)遞增,等價(jià)于內(nèi)恒成立,即內(nèi)恒成立,再分離變量得:內(nèi)恒成立,接下來就求函數(shù)的最小值,小于等于的最小值即可;(2),顯然,要使得函數(shù)處取得極小值,需使左側(cè)為負(fù),右側(cè)為正.令,則只需左、右兩側(cè)均為正即可.結(jié)合圖象可知,只需即可,從而可得的取值范圍.
(1)        2分
內(nèi)單調(diào)遞增,∴內(nèi)恒成立,
內(nèi)恒成立,即內(nèi)恒成立        4分
又函數(shù)上單調(diào)遞增,∴              6分
(2),
顯然,要使得函數(shù)處取得極小值,需使左側(cè)為負(fù),右側(cè)為正.令,則只需左、右兩側(cè)均為正即可
亦即只需,即 .                                    .12分
(原解答有誤,軸不可能有兩個(gè)不同的交點(diǎn))
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若對于任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),,當(dāng)函數(shù)有零點(diǎn)時(shí),求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•浙江)設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)若x=e為y=f(x)的極值點(diǎn),求實(shí)數(shù)a;
(2)求實(shí)數(shù)a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)D是函數(shù)定義域內(nèi)的一個(gè)子區(qū)間,若存在,使,則稱的一個(gè)“次不動點(diǎn)”,也稱在區(qū)間D上存在次不動點(diǎn),若函數(shù)在區(qū)間上存在次不動點(diǎn),則實(shí)數(shù)a的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果f(x)為偶函數(shù),且f(x)導(dǎo)數(shù)存在,則f′(0)的值為( 。
A.2B.1C.0D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)直線與函數(shù),的圖象分別交于M、N兩點(diǎn),則當(dāng)MN達(dá)到最小時(shí)t的值為     

查看答案和解析>>

同步練習(xí)冊答案