【題目】(1)已知,求的最大值;
(2)已知,求的最小值;
(3)已知,求的最大值;
(4)求函數(shù)的最小值.
【答案】(1);(2);(3);(4)
【解析】
(1)根據(jù)基本不等式,求得的最大值,根據(jù)基本不等式等號成立的條件,求得此時(shí)的值.
(2)根據(jù)基本不等式,求得的最小值,根據(jù)基本不等式等號成立的條件,求得此時(shí)的值.
(3)根據(jù)基本不等式,求得的最大值,根據(jù)基本不等式等號成立的條件,求得此時(shí)的值.
(4)將化簡后,利用基本不等式,求得的最小值,根據(jù)基本不等式等號成立的條件,求得此時(shí)的值.
(1)∵,∴,∴.
當(dāng)且僅當(dāng),即時(shí)取等號,.
(2)∵,∴,∴.
當(dāng)且僅當(dāng),即時(shí)取等號,.
(3)∵,∴,∴.
當(dāng)且僅當(dāng),即時(shí)取等號,.
(4).
∵,∴,∴.
當(dāng)且僅當(dāng),即時(shí)取等號,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logax,g(x)=m2x2﹣2mx+1,若b>a>1,且f(b),ab=ba.
(1)求a與b的值;
(2)當(dāng)x∈[0,1]時(shí),函數(shù)g(x)的圖象與h(x)=f(x+1)+m的圖象僅有一個(gè)交點(diǎn),求正實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)射線與曲線交點(diǎn)為、兩點(diǎn),射線與曲線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)是否同時(shí)存在實(shí)數(shù)和正整數(shù),使得函數(shù)在上恰有2019個(gè)零點(diǎn)若存在,請求出所有符合條件的和的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺舉辦的聽曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對,則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對歌名的概率是,乙猜對歌名的概率是,丙猜對歌名的概率是,甲、乙、丙猜對與否互不影響.
(I)求該小組未能進(jìn)入第二輪的概率;
(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知矩形的面積為100,則這個(gè)矩形的長、寬各為多少時(shí),矩形的周長最短?最短周長是多少?
(2)已知矩形的周長為36,則這個(gè)矩形的長、寬各為多少時(shí),它的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左,右焦點(diǎn)分別為F1,F2,過F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為( )
A. B. 11
C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)求函數(shù)的定義域;
(2)試判斷函數(shù)的奇偶性并證明;
(3)若,求函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com