【題目】如圖,在半徑為40cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中A,B在直徑上,點C,D在圓周上、
(1)設AD=x,將矩形ABCD的面積y表示成x的函數(shù),并寫出其定義域;
(2)怎樣截取,才能使矩形材料ABCD的面積最大?并求出最大面積.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經(jīng)過點(0,1).
(1)求實數(shù)a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的有 .
①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;
②在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
③若A,B為銳角三角形的兩個內(nèi)角,則tanAtanB>1;
④若Sn為數(shù)列{an}的前n項和,則此數(shù)列的通項an=Sn﹣Sn﹣1(n>1).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大學生村官王善良落實政府“精準扶貧”精神,幫助貧困戶張三用9萬元購進一部節(jié)能環(huán)保汽車,用于出租.假設第一年需運營費用2萬元,從第二年起,每年運營費用均比上一年增加2萬元,該車每年的運營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)φ(x)=a2x﹣ax(a>0,a≠1).
(1)求函數(shù)φ(x)在[﹣2,2]上的最大值;
(2)當a= 時,φ(x)≤t2﹣2mt+2對所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知P為△ABC所在平面外一點,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的( )
A.重心
B.垂心
C.外心
D.內(nèi)心
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,過E點做EF⊥PB交PB于點F.求證:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com