(2011•大連二模)選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為線段PA的中點(diǎn),過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn).
求證:∠DPB=∠DCP.
分析:先根據(jù)PA與圓相切于A,得到DA2=DB•DC;再結(jié)合DP=DA,得到DP2=DB•DC;最后根據(jù)∠BDP=∠PDC,可得△BDP∽△PDC進(jìn)而得到結(jié)論.
解答:證明:因?yàn)镻A與圓相切于A,所以DA2=DB•DC,(3分)
因?yàn)镈為PA中點(diǎn),所以DP=DA,
所以DP2=DB•DC,即
PD
DC
=
DB
PD
.(6分)
因?yàn)椤螧DP=∠PDC,所以△BDP∽△PDC,(9分)
所以∠DPB=∠DCP.(10分)
點(diǎn)評(píng):本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.屬于基礎(chǔ)題.其中判斷出△BDP∽△PDC是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•大連二模)某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•大連二模)已知x,y滿足線性約束條件:
x-2y+3≥0
2x+y-9≤0
2x+6y-9≥0
,若目標(biāo)函數(shù)z=-x+my取最大值的最優(yōu)解有無(wú)數(shù)個(gè),則m=
2或-3
2或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•大連二模)一個(gè)幾何體的三視圖為如圖所示的三個(gè)直角三角形,則這個(gè)幾何體的體積為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•大連二模)如圖,在棱長(zhǎng)AB=AD=2,AA1=3的長(zhǎng)方體ABCD-A1B1C1D1中,點(diǎn)E是平面BCC1B1內(nèi)動(dòng)點(diǎn),點(diǎn)F是CD的中點(diǎn).
(Ⅰ)試確定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求平面AB1F與平面ABB1A1所成的銳二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案