已知拋物線與直線相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)是(1,2)。如果拋物線的焦點(diǎn)為F,那么等于(    )
A. 5         B.6            C.     D.7
D

試題分析:把點(diǎn)(1,2),代入拋物線和直線方程,分別求得p=2,a=2
∴拋物線方程為,直線方程為2x+y-4=0,聯(lián)立消去y整理得 ,解得x和1或4,
∵A的橫坐標(biāo)為1,∴B點(diǎn)橫坐標(biāo)為4,根據(jù)拋物線定義可知|FA|+|FB|=+1++1=7,故選D..
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=﹣1時(shí),對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線)與橢圓交于、兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn).設(shè)弦的中點(diǎn)為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;
(2)點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于,兩點(diǎn),問:△的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)M(2,1),平行于OM的直線ly軸上的截距為m,直線l與橢圓相交于A,B兩個(gè)不同點(diǎn).

(1)求實(shí)數(shù)m的取值范圍;
(2)證明:直線MA,MBx軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是 (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓(x-2+y2=相切于點(diǎn)Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案