如圖:已知△PAB所在的平面與菱形ABCD所在的平面垂直,且PA=PB=
2
2
AB,∠ABC=60°,E為AB的中點.   
(Ⅰ)證明:CE⊥PA;
(Ⅱ)若F為線段PD上的點,且EF與平面PEC的夾角為45°,求平面EFC與平面PBC夾角的余弦值.
精英家教網(wǎng)

精英家教網(wǎng)
(Ⅰ)證明:在菱形ABCD中,∵∠ABC=60°
∴△ABC為正三角形,
又∵E為AB的中點
∴CE⊥AB,
∵平面PAB⊥平面ABCD,AB為平面PAB與平面ABCD的交線,
∴CE⊥平面PAB,
又∵PA?平面PAB
∴CE⊥PA…(4分)
(Ⅱ)∵PA=PB,E為AB的中點,
∴PE⊥AB,
又∵PE⊥CE,AB∩CE=E
∴PE⊥平面ABCD,
以E為坐標(biāo)原點,EB,EC,EP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系如圖所示
設(shè)AB=2,則PA=PB=
2
,EP=EA=EB=1,EC=
3

∴E(0,0,0),B(1,0,0,),C(0,
3
,0),P(0,0,1),D(-2,
3
,0)
設(shè)
EF
=
EP
+k
PD
,其中0≤k≤1,則
EF
=(-2k,
3
k,1-k)

EB
=(1,0,0)
為平面PEC的法向量,
2
2
=|cos(
EF
,
EB)|
,得k=
1
2
,
即F是PD的中點,∴F(-1,
3
2
1
2
)…(9分)
設(shè)
n
=(x,y,z)
為平面EFC的法向量,則
n
EF
=0
n
EC
=0

-x+
3
2
y+
1
2
z=0
3
y=0
 令z=2,得x=1,取
n
=(1,0,2)

設(shè)
m
=(x1,y1z1)
為平面PBC的法向量,則
m
PB
=0
m
PC
=0
 得出
x1-z1=0
3
y1-z1=0

令z1=1,得x1=1,y1=
3
3
,取
m
=(1,
3
3
,1)

設(shè)平面EFC與平面PBC夾角為θ,則cosθ=|cos(
n
,
m
)|=|
n
m
|
n
|•|
m
|
|
=
3
105
35
…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,側(cè)棱PA⊥平面ABCD,底面ABCD是平行四邊形,PB=PC,AB=1,BC=
2
,E,F(xiàn)分別是BC,PC的中點.
(1)求證:AC⊥平面PAB;
(2)當(dāng)平面PDC與底面ABCD所成二面角為
π
3
時,求二面角F-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,給出下列結(jié)論:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°;⑤直線PD與平面PAB所成角的余弦值為
10
4
.其中正確的有
①④⑤
①④⑤
(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點,PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓O的直徑AB長度為4,點D為線段AB上一點,且AD=
1
3
DB
,點C為圓O上一點,且BC=
3
AC
.點P在圓O所在平面上的正投影為點D,PD=BD.
(Ⅰ)求證:CD⊥平面PAB;
(Ⅱ)求PD與平面PBC所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案