已知雙曲線的中心在原點,一條漸近線與直線
3
x-y+2=0
平行,若點(2,3)在雙曲線上,求雙曲線的標(biāo)準(zhǔn)方程.
分析:依題意可設(shè)出曲線方程為x2-
y2
3
=λ,將點(2,3)的坐標(biāo)代入可求得λ的值.
解答:解:由已知得漸近線方程為y=±
3
x,故設(shè)雙曲線方程為x2-
y2
3
=λ,…(5分)
將點(2,3)坐標(biāo)代入以上方程,
得λ=1,
∴雙曲線方程為為x2-
y2
3
=1.…(10分)
點評:本題考查雙曲線的簡單性質(zhì),根據(jù)題意設(shè)曲線方程為x2-
y2
3
=λ是關(guān)鍵,考查分析與理解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標(biāo)準(zhǔn)方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點為F1(5,0),F(xiàn)2(-5,0),且過點(3,0),
(1)求雙曲線的標(biāo)準(zhǔn)方程.
(2)求雙曲線的離心率及準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)

(1)求雙曲線方程;
(2)設(shè)A點坐標(biāo)為(0,2),求雙曲線上距點A最近的點P的坐標(biāo)及相應(yīng)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標(biāo)為(0,2),則雙曲線上距點A距離最短的點的坐標(biāo)是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊答案