A.f(x)=x2+1是增函數(shù) | ||
B.f(x)=x2+1在(-∞,-5)上是減函數(shù) | ||
C.f(x)=
| ||
D.f(x)=x2+1在(-5,+∞)上是增函數(shù) |
科目:高中數(shù)學(xué) 來源: 題型:
x 2+ax+a |
x |
1 |
x1 |
1 |
x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 | x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:044
以O(shè)為原點,所在直線為x軸,建立如圖所示的直角坐標系.設(shè),點F的坐標為,點G的坐標為.
(1)求關(guān)于t的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷.
(2)設(shè)的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當取得最小值時橢圓的方程.
(3)在(2)的條件下,若點P的坐標為是橢圓上的兩點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
以O(shè)為原點,所在直線為軸,建立如 所示的坐標系。設(shè),點F的坐標為,,點G的坐標為。
(1)求關(guān)于的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當取最小值時橢圓的方程;
(3)在(2)的條件下,若點P的坐標為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市五區(qū)高三學(xué)業(yè)調(diào)研抽測1文科數(shù)學(xué)試卷(解析版) 題型:解答題
經(jīng)調(diào)查統(tǒng)計,某種型號的汽車在勻速行駛中,每小時的耗油量(升)關(guān)于行駛速度(千米/時)的函數(shù)可表示為.已知甲、乙兩地相距千米,在勻速行駛速度不超過千米/時的條件下,該種型號的汽車從甲地 到乙地的耗油量記為(升).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)討論函數(shù)的單調(diào)性,當為多少時,耗油量為最少?最少為多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com