已知函數(shù)f(x)=-x(x-a),x∈[a,1]
(1)若函數(shù)f(x)在區(qū)間[a,-1]上是單調函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[a,-1]上的最大值g(a).
分析:(1)欲使函數(shù)f(x)在區(qū)間[a,-1]上是單調函數(shù),只須二次函數(shù)的對稱軸在區(qū)間[a,-1]的外側,從而列出不等關系即可求a的取值范圍;
(2)欲求函數(shù)f(x)在區(qū)間[a,-1]上的最大值,下面對對稱軸與所給區(qū)間的位置關系進行討論,對每一種情況求出相應的最大值,再綜合結果寫出答案即可.
解答:解:(1)對稱軸為x=
a
2
1
2
,
∵函數(shù)f(x)在區(qū)間[a,1]上是單調函數(shù),
a
2
≤a,即a>0.(4分)
(2)a<1,
①當
a
2
<a,即a>0時,g(a)=f(a)=0,
②當a≤
a
2
≤1
,即a≤0時,g(a)=f(
a
2
)
=
a2
4

綜上:g(a)=
0,a>0
a2
4
,a≤0
(12分)
點評:本小題主要考查函數(shù)單調性的應用、二次函數(shù)的性質、函數(shù)的最值及其幾何意義等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想、分類討論思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案